Heteroepitaxial van der Waals semiconductor superlattices
A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we r...
Saved in:
Published in | Nature nanotechnology Vol. 16; no. 10; pp. 1092 - 1098 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS
2
, WS
2
and WSe
2
. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers
n
in our (MoS
2
/WS
2
)
n
SLs on optical excitations.
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides. |
---|---|
AbstractList | A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS
2
, WS
2
and WSe
2
. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers
n
in our (MoS
2
/WS
2
)
n
SLs on optical excitations.
Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides. A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS , WS and WSe . Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS /WS ) SLs on optical excitations. A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal–organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations—one of the most distinctive electronic features in vdW ML semiconductors—which scale with the stack numbers n in our (MoS2/WS2)n SLs on optical excitations.Kinetics-controlled van der Waals epitaxy in the near-equilibrium limit by metal–organic chemical vapour deposition enables precise layer-by-layer stacking of dissimilar transition metal dichalcogenides. A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS2/WS2)n SLs on optical excitations.A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS2/WS2)n SLs on optical excitations. |
Author | Yang, Dong-Hwan Okello, Odongo F. N. Cha, Soonyoung Min, Seok Young Choi, Si-Young Lee, Chang-Soo Moon, Gunho Han, Cheolhee Park, Min Yeong Jo, Moon-Ho Choi, Hyunyong Kim, Jonghwan Lee, Jekwan Lee, Suk-Ho Ahn, Hyungju Seo, Seung-Young Jin, Gangtae |
Author_xml | – sequence: 1 givenname: Gangtae orcidid: 0000-0001-8634-2623 surname: Jin fullname: Jin, Gangtae organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 2 givenname: Chang-Soo surname: Lee fullname: Lee, Chang-Soo organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 3 givenname: Odongo F. N. surname: Okello fullname: Okello, Odongo F. N. organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 4 givenname: Suk-Ho surname: Lee fullname: Lee, Suk-Ho organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 5 givenname: Min Yeong surname: Park fullname: Park, Min Yeong organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 6 givenname: Soonyoung surname: Cha fullname: Cha, Soonyoung organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS) – sequence: 7 givenname: Seung-Young surname: Seo fullname: Seo, Seung-Young organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 8 givenname: Gunho surname: Moon fullname: Moon, Gunho organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 9 givenname: Seok Young surname: Min fullname: Min, Seok Young organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 10 givenname: Dong-Hwan surname: Yang fullname: Yang, Dong-Hwan organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 11 givenname: Cheolhee orcidid: 0000-0002-8936-9407 surname: Han fullname: Han, Cheolhee organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 12 givenname: Hyungju surname: Ahn fullname: Ahn, Hyungju organization: Pohang Accelerator Laboratory – sequence: 13 givenname: Jekwan surname: Lee fullname: Lee, Jekwan organization: Department of Physics & Astronomy, Seoul National University – sequence: 14 givenname: Hyunyong orcidid: 0000-0003-3295-1049 surname: Choi fullname: Choi, Hyunyong organization: Department of Physics & Astronomy, Seoul National University – sequence: 15 givenname: Jonghwan surname: Kim fullname: Kim, Jonghwan organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 16 givenname: Si-Young orcidid: 0000-0003-1648-142X surname: Choi fullname: Choi, Si-Young organization: Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) – sequence: 17 givenname: Moon-Ho orcidid: 0000-0002-3160-358X surname: Jo fullname: Jo, Moon-Ho email: mhjo@postech.ac.kr organization: Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34267369$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkE1LxDAQhoOsuB_6BzxIwYuX6uSrbY6yqCsseFE8hjSdSpd-mbSi--uN7qrgaQbm4Z2ZZ04mbdciIacULinw7MoLKhMZA6MxgBIs3h6QGU1FFnOu5OS3z9IpmXu_AZBMMXFEplywJOWJmhG1wgFdh301mPfK1NGbaaMCXfRsTO0jj01lu7YY7dC5yI89utoMQ2XRH5PDMiB4sq8L8nR787hcxeuHu_vl9TruGeVDWJ9LpSA1gjEAavNCJlAwEChoCapMc5OozEBSZEIwUVJjRYlcGGvRcIF8QS52ub3rXkf0g24qb7GuTYvd6DWT4auMpVQG9PwfuulG14brApVRUCrhSaDO9tSYN1jo3lWNcR_6R0oA-A7wYdS-oPuLoaC_1Oudeh3U62_1ess_AV9DdVA |
Cites_doi | 10.1038/s41586-019-0975-z 10.1038/nnano.2014.167 10.1021/nl5006542 10.1021/acsnano.7b07059 10.1126/science.281.5379.956 10.1038/nchem.1589 10.1126/science.aaw4194 10.1038/nmat3386 10.1103/PhysRevLett.101.196405 10.1103/RevModPhys.54.437 10.1126/sciadv.aax1325 10.1038/s41586-020-2098-y 10.1016/0022-4596(87)90057-0 10.1063/1.90457 10.1021/acs.chemmater.0c00949 10.1126/science.aao5360 10.1038/nature12385 10.1038/ncomms5966 10.1143/JJAP.19.L225 10.1126/science.264.5158.553 10.1126/science.1235547 10.1126/sciadv.1700518 10.1126/science.276.5311.377 10.1016/S0022-0248(98)01329-3 10.1103/PhysRevLett.115.187002 10.1126/science.aac9439 10.1038/s41565-018-0233-9 10.1038/ncomms8372 10.1038/nnano.2017.100 10.1103/PhysRevB.33.3657 10.1063/1.881353 10.1038/s41565-020-0633-5 10.1103/PhysRevLett.54.2441 10.1038/nature26154 10.1038/s41586-021-03338-0 10.1021/nl3040042 10.1126/sciadv.aaw3180 10.1063/1.333084 10.1038/305668a0 10.1038/nature23905 10.1038/s41467-019-13893-w 10.1038/nature14417 10.1103/PhysRevLett.105.136805 10.1038/417156a 10.1038/nnano.2010.279 10.1038/nphoton.2007.293 10.1038/nature26160 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 2021. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021. |
DBID | NPM 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 |
DOI | 10.1038/s41565-021-00942-z |
DatabaseName | PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic |
DatabaseTitle | PubMed ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 1098 |
ExternalDocumentID | 34267369 10_1038_s41565_021_00942_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: M.-H.J. acknowledges the support of the Institute for Basic Science (IBS), Korea under Project Code IBS-R014-A1. |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR NFIDA NPM PHGZM PHGZT PJZUB PPXIY PQGLB 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PKEHL PQEST PQUKI 7X8 |
ID | FETCH-LOGICAL-p213t-33b59907a422001cbd560d204e41f09f7ba698a06d84424f1ac4fe34accea34e3 |
IEDL.DBID | 7X7 |
ISSN | 1748-3387 1748-3395 |
IngestDate | Fri Jul 11 08:38:05 EDT 2025 Wed Aug 13 09:04:38 EDT 2025 Mon Jul 21 05:39:54 EDT 2025 Fri Feb 21 02:41:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | 2021. The Author(s), under exclusive licence to Springer Nature Limited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-p213t-33b59907a422001cbd560d204e41f09f7ba698a06d84424f1ac4fe34accea34e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8634-2623 0000-0003-1648-142X 0000-0003-3295-1049 0000-0002-3160-358X 0000-0002-8936-9407 |
PMID | 34267369 |
PQID | 2581099636 |
PQPubID | 546299 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2552982715 proquest_journals_2581099636 pubmed_primary_34267369 springer_journals_10_1038_s41565_021_00942_z |
PublicationCentury | 2000 |
PublicationDate | 20211000 2021-Oct 20211001 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: 20211000 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationTitleAlternate | Nat Nanotechnol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Koma (CR45) 1999; 201/202 Jin (CR34) 2019; 5 Chhowalla (CR17) 2013; 5 Lin (CR46) 2018; 12 Novoselov, Mishchenko, Carvalho, Castro Neto (CR19) 2016; 353 Zhang, Lagally (CR35) 1997; 276 Kim (CR43) 2017; 3 Radisavljevic, Radenovic, Brivio, Giacometti, Kis (CR15) 2011; 6 Zou, Liu, Yakobson (CR42) 2013; 13 Ando, Fowler, Stern (CR1) 1982; 54 Schutte, De Boer, Jellinek (CR41) 1987; 70 Li (CR28) 2020; 579 Tran (CR21) 2019; 567 Bae (CR12) 2020; 15 Nakamura (CR7) 1998; 281 Haigh (CR31) 2012; 11 Faist (CR5) 1994; 264 Zultak (CR27) 2020; 11 Lu (CR37) 2017; 12 Köhler (CR6) 2002; 417 Abstreiter, Brugger, Wolf, Jorke, Herzog (CR9) 1985; 54 Kang (CR33) 2015; 520 Mendez, Bastard (CR13) 1993; 46 Kretinin (CR30) 2014; 14 Mak (CR47) 2008; 101 Zur, McGuill (CR10) 1984; 55 Zhao (CR29) 2021; 591 Mimura, Hiyamizu, Fujii, Nanbu (CR4) 1980; 19 Lee (CR38) 2020; 32 Bauer, van der Merwe (CR11) 1986; 33 Khan, Balakrishnan, Katona (CR8) 2008; 2 Kang (CR32) 2017; 550 Xie (CR36) 2018; 359 Mak, Lee, Hone, Shan, Heinz (CR14) 2010; 105 Cao (CR24) 2018; 556 Hong (CR44) 2014; 9 Britnell (CR16) 2013; 340 Schmidt (CR26) 2018; 13 Anderson, Apsley (CR2) 1983; 305 Geim, Grigorieva (CR18) 2013; 499 Heo (CR23) 2015; 6 Yu, Wang, Tong, Xu, Yao (CR20) 2015; 115 Jauregui (CR22) 2019; 366 Cao (CR25) 2018; 556 Vaziri (CR40) 2019; 5 Dingle, Störmer, Gossard, Wiegmann (CR3) 1978; 33 Liu (CR39) 2014; 5 |
References_xml | – volume: 567 start-page: 71 year: 2019 end-page: 75 ident: CR21 article-title: Evidence for moiré excitons in van der Waals heterostructures publication-title: Nature doi: 10.1038/s41586-019-0975-z – volume: 9 start-page: 682 year: 2014 end-page: 686 ident: CR44 article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.167 – volume: 14 start-page: 3270 year: 2014 end-page: 3276 ident: CR30 article-title: Electronic properties of graphene encapsulated with different two-dimensional atomic crystals publication-title: Nano Lett. doi: 10.1021/nl5006542 – volume: 12 start-page: 965 year: 2018 end-page: 975 ident: CR46 article-title: Realizing large-scale, electronic-grade two-dimensional semiconductors publication-title: ACS Nano doi: 10.1021/acsnano.7b07059 – volume: 281 start-page: 956 year: 1998 end-page: 961 ident: CR7 article-title: The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes publication-title: Science doi: 10.1126/science.281.5379.956 – volume: 5 start-page: 263 year: 2013 end-page: 275 ident: CR17 article-title: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 366 start-page: 870 year: 2019 end-page: 875 ident: CR22 article-title: Electrical control of interlayer exciton dynamics in atomically thin heterostructures publication-title: Science doi: 10.1126/science.aaw4194 – volume: 11 start-page: 764 year: 2012 end-page: 767 ident: CR31 article-title: Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices publication-title: Nat. Mater. doi: 10.1038/nmat3386 – volume: 101 start-page: 196405 year: 2008 ident: CR47 article-title: Measurement of the optical conductivity of graphene publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.196405 – volume: 54 start-page: 437 year: 1982 end-page: 672 ident: CR1 article-title: Electronic properties of two-dimensional systems publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.54.437 – volume: 5 start-page: eaax1325 year: 2019 ident: CR40 article-title: Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials publication-title: Sci. Adv. doi: 10.1126/sciadv.aax1325 – volume: 579 start-page: 368 year: 2020 end-page: 374 ident: CR28 article-title: General synthesis of two-dimensional van der Waals heterostructure arrays publication-title: Nature doi: 10.1038/s41586-020-2098-y – volume: 70 start-page: 207 year: 1987 end-page: 209 ident: CR41 article-title: Crystal structures of tungsten disulfide and diselenide publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(87)90057-0 – volume: 33 start-page: 665 year: 1978 end-page: 667 ident: CR3 article-title: Electron mobilities in modulation-doped semiconductor heterojunction superlattices publication-title: Appl. Phys. Lett. doi: 10.1063/1.90457 – volume: 32 start-page: 5084 year: 2020 end-page: 5090 ident: CR38 article-title: Programmed band gap modulation within van der Waals semiconductor monolayers by metalorganic vapor-phase epitaxy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c00949 – volume: 359 start-page: 1131 year: 2018 end-page: 1136 ident: CR36 article-title: Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain publication-title: Science doi: 10.1126/science.aao5360 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR18 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 5 year: 2014 ident: CR39 article-title: Evolution of interlayer coupling in twisted molybdenum disulfide bilayers publication-title: Nat. Commun. doi: 10.1038/ncomms5966 – volume: 19 start-page: L225 year: 1980 end-page: L227 ident: CR4 article-title: A new field-effect transistor with selectively doped GaAs/n-Al Ga As heterojunctions publication-title: Jpn J. Appl. Phys. doi: 10.1143/JJAP.19.L225 – volume: 264 start-page: 553 year: 1994 end-page: 556 ident: CR5 article-title: Quantum cascade laser publication-title: Science doi: 10.1126/science.264.5158.553 – volume: 340 start-page: 1311 year: 2013 end-page: 1314 ident: CR16 article-title: Strong light–matter interactions in heterostructures of atomically thin films publication-title: Science doi: 10.1126/science.1235547 – volume: 3 start-page: e1700518 year: 2017 ident: CR43 article-title: Observation of ultralong valley lifetime in WSe /MoS heterostructures publication-title: Sci. Adv. doi: 10.1126/sciadv.1700518 – volume: 276 start-page: 377 year: 1997 end-page: 383 ident: CR35 article-title: Atomistic processes in the early stages of thin-film growth publication-title: Science doi: 10.1126/science.276.5311.377 – volume: 201/202 start-page: 236 year: 1999 end-page: 241 ident: CR45 article-title: Van der Waals epitaxy for highly lattice-mismatched systems publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(98)01329-3 – volume: 115 start-page: 187002 year: 2015 ident: CR20 article-title: Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.187002 – volume: 353 start-page: aac9439 year: 2016 ident: CR19 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 13 start-page: 1035 year: 2018 end-page: 1041 ident: CR26 article-title: Nano-imaging of intersubband transitions in van der Waals quantum wells publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0233-9 – volume: 6 year: 2015 ident: CR23 article-title: Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks publication-title: Nat. Commun. doi: 10.1038/ncomms8372 – volume: 12 start-page: 744 year: 2017 end-page: 749 ident: CR37 article-title: Janus monolayers of transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.100 – volume: 33 start-page: 3657 year: 1986 end-page: 3671 ident: CR11 article-title: Structure and growth of crystalline superlattices: from monolayer to superlattice publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.33.3657 – volume: 46 start-page: 34 year: 1993 end-page: 42 ident: CR13 article-title: Wannier–Stark ladders and Bloch oscillations in superlattices publication-title: Phys. Today doi: 10.1063/1.881353 – volume: 15 start-page: 272 year: 2020 end-page: 276 ident: CR12 article-title: Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0633-5 – volume: 54 start-page: 2441 year: 1985 end-page: 2444 ident: CR9 article-title: Strain-induced two-dimensional electron gas in selectively doped Si/Si Ge superlattices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.54.2441 – volume: 556 start-page: 80 year: 2018 end-page: 84 ident: CR25 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 591 start-page: 385 year: 2021 end-page: 390 ident: CR29 article-title: High-order superlattices by rolling up van der Waals heterostructures publication-title: Nature doi: 10.1038/s41586-021-03338-0 – volume: 13 start-page: 253 year: 2013 end-page: 258 ident: CR42 article-title: Predicting dislocations and grain boundaries in two-dimensional metal-disulfides from the first principles publication-title: Nano Lett. doi: 10.1021/nl3040042 – volume: 5 start-page: eaaw3180 year: 2019 ident: CR34 article-title: Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw3180 – volume: 55 start-page: 378 year: 1984 end-page: 386 ident: CR10 article-title: Lattice match: an application to heteroepitaxy publication-title: J. Appl. Phys. doi: 10.1063/1.333084 – volume: 305 start-page: 668 year: 1983 end-page: 669 ident: CR2 article-title: Electronics: semiconductor superlattices publication-title: Nature doi: 10.1038/305668a0 – volume: 550 start-page: 229 year: 2017 end-page: 233 ident: CR32 article-title: Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures publication-title: Nature doi: 10.1038/nature23905 – volume: 11 year: 2020 ident: CR27 article-title: Ultra-thin van der Waals crystals as semiconductor quantum wells publication-title: Nat. Commun. doi: 10.1038/s41467-019-13893-w – volume: 520 start-page: 656 year: 2015 end-page: 660 ident: CR33 article-title: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity publication-title: Nature doi: 10.1038/nature14417 – volume: 105 start-page: 136805 year: 2010 ident: CR14 article-title: Atomically thin MoS : a new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 417 start-page: 156 year: 2002 end-page: 159 ident: CR6 article-title: Terahertz semiconductor-heterostructure laser publication-title: Nature doi: 10.1038/417156a – volume: 6 start-page: 147 year: 2011 end-page: 150 ident: CR15 article-title: Single-layer MoS transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.279 – volume: 2 start-page: 77 year: 2008 end-page: 84 ident: CR8 article-title: Ultraviolet light-emitting diodes based on group three nitrides publication-title: Nat. Photon. doi: 10.1038/nphoton.2007.293 – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR24 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 |
SSID | ssj0052924 |
Score | 2.6012638 |
Snippet | A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into... |
SourceID | proquest pubmed springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1092 |
SubjectTerms | 140/125 140/133 639/301/357/1018 639/925/357/1018 Chalcogenides Chemistry and Materials Science Crystals Dissimilar metals Electronic systems Epitaxial growth Epitaxy Excitation Interlayers Kinetics Materials Science Metalorganic chemical vapor deposition Metals Molybdenum disulfide Nanotechnology Nanotechnology and Microengineering Organic chemicals Organic chemistry Semiconductors Stacking Superlattices Transition metal compounds Tungsten disulfide |
Title | Heteroepitaxial van der Waals semiconductor superlattices |
URI | https://link.springer.com/article/10.1038/s41565-021-00942-z https://www.ncbi.nlm.nih.gov/pubmed/34267369 https://www.proquest.com/docview/2581099636 https://www.proquest.com/docview/2552982715 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8NAEB20vehB_LZaSwSPBtP9SHZPotJaBIuIxd7CJtkck9i0IP31ziRpKyhe9pIQkpmX3Zl9s_MArhE1KbepdnUiMUFRvnaVUZGb-szi_yW5qFQUXsb-aCKep3LabLiVTVnlak6sJuokj2mP_JZJRSSOz_274tMl1ShiVxsJjW1oU-syQnUwXSdckula1DYQysVULGgOzXhc3ZaUuNDZZEymMcNh7vKvEPMXPVqtOsN92GvCRee-9u8BbNnsEHZ_NBE8Aj2iipbckvzHF6LJwdjYSezM-TAILaek6vc8o7au-cwpFwVt4M2p5K08hslw8P44chtBBLdgfT7Hb4gkrh6BEYxKoeIowXglYZ6wop96Og0i42tlPD9RQjCR9k0sUsuFiWNruLD8BFpZntkzcLiKuU641Ewmgqg65elYBqkxOArFO9BdWSNsUF2GGx904Gp9GfFIJIPJbL6ge9DsigV92YHT2ophUTfOCDmGAwH3dQduVmbdPLxiw7kKa8-E6Jmw8ky4PP__XS5gh5Efqwq7LrTms4W9xEhhHvUqOOCohk89aD8Mxq9v34Gau5Y |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcIAeKh59pA1gJLhh1dnZtXcPCCEgpPRxSkRv27W9PtppnKhtflR_Y2fsmCJRcevFF1u71sy389h5AXwg1BToCxOaXJGDomMTaqfTsIiFp_OlUDZTFE7P4vFU_jpX5xtw29XCcFplJxMbQZ1XGd-RHwqlOYgTY_xldhny1CiOrnYjNFpYHPubK3LZ6s9H34m_H4UY_Zh8G4frqQLhTAxxESKmikRw4qTgfKIszUnp5yKSXg6LyBRJ6mKjXRTnWkohi6HLZOFRuizzDqVHWvcJPJVImpwr00c_O8mvhGmH6CZS0zY6WRfpRKgPa3aUuBaanHfyqES4esik_Scc22i50QvYWpunwdcWTy9hw5evYPOvpoWvwYw5g6byPG7kmtAbkC0e5H4e_HYE5aDmbPuq5Day1TyolzO-MFxwil29DdNHIdUO9Mqq9HsQoM7Q5KiMULnk0KCOTKaSwjl6So19GHTUsOtTVNt7nvfh_Z_XhH8OarjSV0v-hsiuRTJUfdhtqWhnbaMOi2R-JBibPnzqyHq_eBN9R21bzljijG04Y1f7__-Xd_BsPDk9sSdHZ8cH8FwwT5vsvgH0FvOlf0NWyiJ920AjgIvHxuIdUbr1lA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMqrXSgQJLgRbdZjJ_YBVUC72lJYVYiK3lwnsY_JstkV0J_Gr2MmD4oE4tZLLonsaObzeMbzjQfgBaEmoA8mNqWiAEWnJtZO53FIhaf1pVC2XRQ-LtL5mXx_rs634OdQC8O0ysEmtoa6rAs-I58IpTmJk2I6CT0t4vRwdrD8GnMHKc60Du00Ooic-B_fKHxrXh8fkq5fCjE7-vxuHvcdBuKlmOI6RswVmePMScHcoiIvyQEoRSK9nIbEhCx3qdEuSUstpZBh6goZPEpXFN6h9Ejj3oDtjKOiEWy_PVqcfhr2ASVM11I3k5om0llfspOgnjQcNnFlNIXyFF-J-PJfDu5fydl2z5vtwJ3eWY3edOi6C1u-uge3_7jC8D6YOfNpas_NR74TliPyzKPSr6IvjoAdNcy9ryu-VLZeRc1myceHaybcNQ_g7FqE9RBGVV35PYhQF2hKVEaoUnKiUCemUFlwjp5S4xj2B2nYfk019goBY3j--zWtBk5xuMrXG_6GxK5FNlVj2O2kaJfdtR0WyRnJMDVjeDWI9WrwNheP2naasaQZ22rGXj76_788g5uEQ_vheHHyGG4JVmlL9duH0Xq18U_IZVnnT3tsRHBx3XD8BeQ8-yY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heteroepitaxial+van+der+Waals+semiconductor+superlattices&rft.jtitle=Nature+nanotechnology&rft.au=Jin%2C+Gangtae&rft.au=Lee%2C+Chang-Soo&rft.au=Okello%2C+Odongo+F+N&rft.au=Lee%2C+Suk-Ho&rft.date=2021-10-01&rft.eissn=1748-3395&rft.volume=16&rft.issue=10&rft.spage=1092&rft_id=info:doi/10.1038%2Fs41565-021-00942-z&rft_id=info%3Apmid%2F34267369&rft.externalDocID=34267369 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |