Accurate Measurement of DNA Methylation: Challenges and Bias Correction
DNA methylation is a key epigenetic modification involved in gene regulation whose contribution to disease susceptibility is still not fully understood. As the cost of genome sequencing technologies continues to drop, it will soon become commonplace to perform genome-wide quantification of DNA methy...
Saved in:
Published in | Methods in molecular biology (Clifton, N.J.) Vol. 2432; p. 25 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
2022
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | DNA methylation is a key epigenetic modification involved in gene regulation whose contribution to disease susceptibility is still not fully understood. As the cost of genome sequencing technologies continues to drop, it will soon become commonplace to perform genome-wide quantification of DNA methylation at a single base-pair resolution. However, the demand for its accurate quantification might vary across studies. When the scope of the analysis is to detect regions of the genome with different methylation patterns between two or more conditions, e.g., case vs control; treatments vs placebo, accuracy is not crucial. This is the case in epigenome-wide association studies used as genome-wide screening of methylation changes to detect new candidate genes and regions associated with a specific disease or condition. If the aim of the analysis is to use DNA methylation measurements as a biomarker for diseases diagnosis and treatment (Laird, Nat Rev Cancer 3:253-266, 2003; Bock, Epigenomics 1:99-110, 2009), it is instead recommended to produce accurate methylation measurements. Furthermore, if the objective is the detection of DNA methylation in subclonal tumor cell populations or in circulating tumor DNA or in any case of mosaicism, the importance of accuracy becomes critical. The aim of this chapter is to describe the factors that could affect the precise measurement of methylation levels and a recent Bayesian statistical method called MethylCal and its extension that have been proposed to minimize this problem. |
---|---|
ISSN: | 1940-6029 |
DOI: | 10.1007/978-1-0716-1994-0_3 |