Optoelectrical and low-frequency noise characteristics of flexible ZnO-SiO2 photodetectors with organosilicon buffer layer

The present study demonstrates the optoelectrical and low-frequency noise characteristics of ZnO-SiO(2) nanocomposite solar-blind metal-semiconductor-metal photodetectors (MSM PDs) on flexible polyethersulfone (PES) substrate with and without an organosilicon [SiO(x)(CH(3))] buffer layer. For a give...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 21; no. 8; pp. 9643 - 9651
Main Authors Lai, Wei-Chih, Chen, Jiun-Ting, Yang, Ya-Yu
Format Journal Article
LanguageEnglish
Published United States 22.04.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study demonstrates the optoelectrical and low-frequency noise characteristics of ZnO-SiO(2) nanocomposite solar-blind metal-semiconductor-metal photodetectors (MSM PDs) on flexible polyethersulfone (PES) substrate with and without an organosilicon [SiO(x)(CH(3))] buffer layer. For a given bandwidth of 100 Hz and a -5 V applied bias, the noise equivalent powers of the ZnO-SiO(2) nanocomposite MSM PD on PES with and without the SiO(x)(CH(3)) buffer layer were 1.39 × 10(-14) and 5.72 × 10(-14) W at 240nm, respectively, corresponding to the normalized detectivities of 5.04 × 10(14) and 1.22 × 10(14) Hz(0.5) W(-1), respectively. These findings indicate that a lower noise level and a higher detectivity can be achieved for ZnO-SiO(2) nanocomposite MSM PDs on PES by introducing a SiO(x)(CH(3)) buffer layer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
DOI:10.1364/OE.21.009643