Stimulation of Ras guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm) upon tyrosine phosphorylation by the Cdc42-regulated kinase ACK1

Ras-GRF1 is a brain-specific guanine nucleotide exchange factor (GEF) for Ras, whose activity is regulated in response to Ca(2+) influx and G protein-coupled receptor signals. In addition, Ras-GRF1 acts as a GEF for Rac when tyrosine-phosphorylated following G protein-coupled receptor stimulation. H...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 275; no. 38; pp. 29788 - 29793
Main Authors Kiyono, M, Kato, J, Kataoka, T, Kaziro, Y, Satoh, T
Format Journal Article
LanguageEnglish
Published United States 22.09.2000
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ras-GRF1 is a brain-specific guanine nucleotide exchange factor (GEF) for Ras, whose activity is regulated in response to Ca(2+) influx and G protein-coupled receptor signals. In addition, Ras-GRF1 acts as a GEF for Rac when tyrosine-phosphorylated following G protein-coupled receptor stimulation. However, the mechanisms underlying the regulation of Ras-GRF1 functions remain incompletely understood. We show here that activated ACK1, a nonreceptor tyrosine kinase that belongs to the focal adhesion kinase family, causes tyrosine phosphorylation of Ras-GRF1. On the other hand, kinase-deficient ACK1 exerted no effect. GEF activity of Ras-GRF1 toward Ha-Ras, as defined by in vitro GDP binding and release assays, was augmented after tyrosine phosphorylation by ACK1. In contrast, GEF activity toward Rac1 remained latent, implying that ACK1 does not represent a tyrosine kinase that acts downstream of G protein-coupled receptors. Consistent with enhanced Ras-GEF activity, accumulation of the GTP-bound form of Ras within the cell was shown through the use of Ras-binding domain pull-down assays. Furthermore, Ras-dependent activation of ERK2 by Ras-GRF1 was enhanced following co-expression of activated ACK1. These results implicate ACK1 as an upstream modulator of Ras-GRF1 and suggest a signaling cascade consisting of Cdc42, ACK1, Ras-GRF1, and Ras in neuronal cells.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
DOI:10.1074/jbc.M001378200