Metabolic and endocrine effects of metabolic acidosis in humans

Metabolic acidosis is an important acid-base disturbance in humans. It is characterised by a primary decrease in body bicarbonate stores and is known to induce multiple endocrine and metabolic alterations. Metabolic acidosis induces nitrogen wasting and, in humans, depresses protein metabolism. The...

Full description

Saved in:
Bibliographic Details
Published inSwiss medical weekly Vol. 131; no. 9-10; pp. 127 - 132
Main Authors Wiederkehr, M, Krapf, R
Format Journal Article
LanguageEnglish
Published Switzerland 10.03.2001
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Metabolic acidosis is an important acid-base disturbance in humans. It is characterised by a primary decrease in body bicarbonate stores and is known to induce multiple endocrine and metabolic alterations. Metabolic acidosis induces nitrogen wasting and, in humans, depresses protein metabolism. The acidosis-induced alterations in various endocrine systems include decreases in IGF-1 levels due to peripheral growth hormone insensitivity, a mild form of primary hypothyroidism and hyperglucocorticoidism. Metabolic acidosis induces a negative calcium balance (resorption from bone) with hypercalciuria and a propensity to develop kidney stones. Metabolic acidosis also results in hypophosphataemia due to renal phosphate wasting. Negative calcium balance and phosphate depletion combine to induce a metabolic bone disease that exhibits features of both osteoporosis and osteomalacia. In humans at least, 1,25-(OH)2 vitamin D levels increase, probably through phosphate depletion-induced stimulation of 1-alpha hydroxylase. The production rate of 1,25-(OH)2 vitamin D is thus stimulated, and parathyroid hormone decreases secondarily. There is experimental evidence to support the notion that even mild degrees of acidosis, such as that occurring by ingestion of a high animal protein diet, induces some of these metabolic and endocrine effects. The possible role of diet-induced acid loads in nephrolithiasis, age-related loss of lean body mass and osteoporosis is discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:1424-7860