Alternatives to the isomerase-dependent pathway for the beta-oxidation of oleic acid are dispensable in Saccharomyces cerevisiae. Identification of YOR180c/DCI1 encoding peroxisomal delta(3,5)-delta(2,4)-dienoyl-CoA isomerase

Fatty acids with double bonds at odd-numbered positions such as oleic acid can enter beta-oxidation via a pathway relying solely on the auxiliary enzyme Delta(3)-Delta(2)-enoyl-CoA isomerase, termed the isomerase-dependent pathway. Two novel alternative pathways have recently been postulated to exis...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 274; no. 35; p. 24514
Main Authors Gurvitz, A, Mursula, A M, Yagi, A I, Hartig, A, Ruis, H, Rottensteiner, H, Hiltunen, J K
Format Journal Article
LanguageEnglish
Published United States 27.08.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Fatty acids with double bonds at odd-numbered positions such as oleic acid can enter beta-oxidation via a pathway relying solely on the auxiliary enzyme Delta(3)-Delta(2)-enoyl-CoA isomerase, termed the isomerase-dependent pathway. Two novel alternative pathways have recently been postulated to exist in mammals, and these additionally depend on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase (di-isomerase-dependent) or on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase and 2,4-dienoyl-CoA reductase (reductase-dependent). We report the identification of the Saccharomyces cerevisiae oleic acid-inducible DCI1 (YOR180c) gene encoding peroxisomal di-isomerase. Enzyme assays conducted on soluble extracts derived from yeast cells overproducing Dci1p using 3,5,8,11,14-eicosapentenoyl-CoA as substrate demonstrated a specific di-isomerase activity of 6 nmol x min(-1) per mg of protein. Similarly enriched extracts from eci1Delta cells lacking peroxisomal 3,2-isomerase additionally contained an intrinsic 3,2-isomerase activity that could generate 3, 5,8,11,14-eicosapentenoyl-CoA from 2,5,8,11,14-eicosapentenoyl-CoA but not metabolize trans-3-hexenoyl-CoA. Amplification of this intrinsic activity replaced Eci1p since it restored growth of the eci1Delta strain on petroselinic acid for which di-isomerase is not required whereas Eci1p is. Heterologous expression in yeast of rat di-isomerase resulted in a peroxisomal protein that was enzymatically active but did not re-establish growth of the eci1Delta mutant on oleic acid. A strain devoid of Dci1p grew on oleic acid to wild-type levels, whereas one lacking both Eci1p and Dci1p grew as poorly as the eci1Delta mutant. Hence, we reasoned that yeast di-isomerase does not additionally represent a physiological 3,2-isomerase and that Dci1p and the postulated alternative pathways in which it is entrained are dispensable for degrading oleic acid.
ISSN:0021-9258
DOI:10.1074/jbc.274.35.24514