A single base substitution in the variable pocket of yeast tRNA(Arg) eliminates species-specific aminoacylation
Early biochemical data showed that aminoacyl-tRNA synthetases often displayed species-specific recognition of tRNA. We compared the ability of purified Saccharomyces cerevisiae and Escherichia coli arginyl-tRNA synthetases to aminoacylate native and transcribed yeast tRNA(Arg) as well as E. coli tRN...
Saved in:
Published in | Biochimica et biophysica acta Vol. 1473; no. 2-3; p. 356 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
27.12.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Early biochemical data showed that aminoacyl-tRNA synthetases often displayed species-specific recognition of tRNA. We compared the ability of purified Saccharomyces cerevisiae and Escherichia coli arginyl-tRNA synthetases to aminoacylate native and transcribed yeast tRNA(Arg) as well as E. coli tRNA(Arg). The kinetic data revealed that yeast ArgRS could charge E. coli tRNA(Arg), but at a lower efficiency than it charged either the transcribed or native yeast tRNA(Arg). E. coli ArgRS can acylate only its cognate E. coli tRNA. Strikingly, a single base change from C to A at position 20 in yeast tRNA(3)(Arg) altered the species specificity. The transcript of yeast tRNA(3)(Arg)CA20 mutant was aminoacylated by E. coli ArgRS with a 10(6) increase in k(cat)/K(m) over that for aminoacylation of yeast tRNA(3)(Arg) transcript. This indicates that A20 is not only an important identity of E. coli tRNA(Arg), but is also the key to altering species-specific aminoacylation of yeast tRNA(Arg). |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0006-3002 |
DOI: | 10.1016/S0304-4165(99)00143-9 |