Beta 2-microglobulin kinetics in maintenance hemodialysis: a comparison of conventional and high-flux dialyzers and the effects of dialyzer reuse

beta 2-Microglobulin (beta 2M) forms synovial and bony amyloid deposits in long-term hemodialysis patients. To define the kinetics of beta 2M during hemodialysis and the effects of dialyzer reprocessing, we measured serum beta 2M, plasma C3a, and neutrophil counts immediately predialysis; 15, 90, an...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of kidney diseases Vol. 13; no. 5; p. 390
Main Authors DiRaimondo, C R, Pollak, V E
Format Journal Article
LanguageEnglish
Published United States 01.05.1989
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:beta 2-Microglobulin (beta 2M) forms synovial and bony amyloid deposits in long-term hemodialysis patients. To define the kinetics of beta 2M during hemodialysis and the effects of dialyzer reprocessing, we measured serum beta 2M, plasma C3a, and neutrophil counts immediately predialysis; 15, 90, and 180 minutes after beginning dialysis; and 15 minutes postdialysis in ten chronic hemodialysis patients. The studies were performed during first and third uses of cuprammonium rayon and polysulfone dialyzers processed by rinsing with water, then bleach, in an automated system (Seratronics DRS 4) and then packed in 1.5% formaldehyde. Mean serum beta 2M (corrected for ultrafiltration) decreased by 16.6% +/- 18.1% with new cuprammonium dialyzers and 57.1% +/- 12.8% with new polysulfone dialyzers. Dialyzer reprocessing had no significant effect on this decline. Predialysis serum beta 2M decreased by 30.4% +/- 15.5% 1 month after switching from cuprammonium to polysulfone dialyzers; these levels remained stable after 3 months of dialysis with polysulfone. Complement activation and neutropenia during dialysis were significantly more marked with cuprammonium, but were not affected by reprocessing of either dialyzer. In vitro adsorption of 124I-beta 2M to polysulfone fibers was greater than to cuprammonium; adsorption was not influenced by dialyzer reprocessing.
ISSN:0272-6386
DOI:10.1016/S0272-6386(89)80022-8