Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph Models
Automated model generation can be highly beneficial for various application scenarios including software tool certification, validation of cyber-physical systems or benchmarking graph databases to avoid tedious manual synthesis of models. In the paper, we present a long-term research challenge how t...
Saved in:
Published in | Graph Transformation, Specifications, and Nets Vol. 10800; pp. 285 - 312 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Automated model generation can be highly beneficial for various application scenarios including software tool certification, validation of cyber-physical systems or benchmarking graph databases to avoid tedious manual synthesis of models. In the paper, we present a long-term research challenge how to generate graph models specific to a domain which are consistent, diverse, scalable and realistic at the same time.
We provide foundations for a class of model generators along a refinement relation which operates over partial models with 3-valued representation and ensures that subsequently derived partial models preserve the truth evaluation of well-formedness constraints in the domain. We formally prove completeness, i.e. any finite instance model of a domain can be generated by model generator transformations in finite steps and soundness, i.e. any instance model retrieved as a solution satisfies all well-formedness constraints. An experimental evaluation is carried out in the context of a statechart modeling tool to evaluate the trade-off between different characteristics of model generators. |
---|---|
ISBN: | 9783319753959 3319753959 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-75396-6_16 |