A Behavioral Comparison of Some Probabilistic Logic Models
Probabilistic Logic Models (PLMs) are efficient frameworks that combine the expressive power of first-order logic as knowledge representation and the capability to model uncertainty with probabilities. Stochastic Logic Programs (SLPs) and Statistical Relational Models (SRMs), which are considered as...
Saved in:
Published in | Probabilistic Inductive Logic Programming Vol. 4911; pp. 305 - 324 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Germany
Springer Berlin / Heidelberg
2008
Springer Berlin Heidelberg |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Probabilistic Logic Models (PLMs) are efficient frameworks that combine the expressive power of first-order logic as knowledge representation and the capability to model uncertainty with probabilities. Stochastic Logic Programs (SLPs) and Statistical Relational Models (SRMs), which are considered as domain frequency approaches, and on the other hand Bayesian Logic Programs (BLPs) and Probabilistic Relational Models (PRMs) (possible worlds approaches), are promising PLMs in the categories. This paper is aimed at comparing the relative expressive power of these frameworks and developing translations between them based on a behavioral comparison of their semantics and probability computation. We identify that SLPs augmented with combining functions (namely extended SLPs) and BLPs can encode equivalent probability distributions, and we show how BLPs can define the same semantics as complete, range-restricted SLPs. We further demonstrate that BLPs (resp. SLPs) can encode the relational semantics of PRMs (resp. SRMs). Whenever applicable, we provide inter-translation algorithms, present their soundness and give worked examples. |
---|---|
ISBN: | 9783540786511 3540786511 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-78652-8_12 |