Basic Principles of Learning Bayesian Logic Programs
Bayesian logic programs tightly integrate definite logic programs with Bayesian networks in order to incorporate the notions of objects and relations into Bayesian networks. They establish a one-to-one mapping between ground atoms and random variables, and between the immediate consequence operator...
Saved in:
Published in | Probabilistic Inductive Logic Programming Vol. 4911; pp. 189 - 221 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Germany
Springer Berlin / Heidelberg
2008
Springer Berlin Heidelberg |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bayesian logic programs tightly integrate definite logic programs with Bayesian networks in order to incorporate the notions of objects and relations into Bayesian networks. They establish a one-to-one mapping between ground atoms and random variables, and between the immediate consequence operator and the directly influenced by relation. In doing so, they nicely separate the qualitative (i.e. logical) component from the quantitative (i.e. the probabilistic) one providing a natural framework to describe general, probabilistic dependencies among sets of random variables. In this chapter, we present results on combining Inductive Logic Programming with Bayesian networks to learn both the qualitative and the quantitative components of Bayesian logic programs from data. More precisely, we show how the qualitative components can be learned by combining the inductive logic programming setting learning from interpretations with score-based techniques for learning Bayesian networks. The estimation of the quantitative components is reduced to the corresponding problem of (dynamic) Bayesian networks. |
---|---|
Bibliography: | The is a slightly modified version of Basic Principles of Learning Bayesian Logic Programs, Technical Report No. 174, Institute for Computer Science, University of Freiburg, Germany, June 2002. The major change is an improved section on parameter estimation. For historical reasons, all other parts are left unchanged (next to minor editorial changes). |
ISBN: | 9783540786511 3540786511 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-78652-8_7 |