Basic Principles of Learning Bayesian Logic Programs

Bayesian logic programs tightly integrate definite logic programs with Bayesian networks in order to incorporate the notions of objects and relations into Bayesian networks. They establish a one-to-one mapping between ground atoms and random variables, and between the immediate consequence operator...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic Inductive Logic Programming Vol. 4911; pp. 189 - 221
Main Authors Kersting, Kristian, De Raedt, Luc
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2008
Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bayesian logic programs tightly integrate definite logic programs with Bayesian networks in order to incorporate the notions of objects and relations into Bayesian networks. They establish a one-to-one mapping between ground atoms and random variables, and between the immediate consequence operator and the directly influenced by relation. In doing so, they nicely separate the qualitative (i.e. logical) component from the quantitative (i.e. the probabilistic) one providing a natural framework to describe general, probabilistic dependencies among sets of random variables. In this chapter, we present results on combining Inductive Logic Programming with Bayesian networks to learn both the qualitative and the quantitative components of Bayesian logic programs from data. More precisely, we show how the qualitative components can be learned by combining the inductive logic programming setting learning from interpretations with score-based techniques for learning Bayesian networks. The estimation of the quantitative components is reduced to the corresponding problem of (dynamic) Bayesian networks.
Bibliography:The is a slightly modified version of Basic Principles of Learning Bayesian Logic Programs, Technical Report No. 174, Institute for Computer Science, University of Freiburg, Germany, June 2002. The major change is an improved section on parameter estimation. For historical reasons, all other parts are left unchanged (next to minor editorial changes).
ISBN:9783540786511
3540786511
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-78652-8_7