On the Support of Anomalous Dissipation Measures

By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur a...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical fluid mechanics Vol. 26; no. 4
Main Authors De Rosa, Luigi, Drivas, Theodore D., Inversi, Marco
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:By means of a unifying measure-theoretic approach, we establish lower bounds on the Hausdorff dimension of the space-time set which can support anomalous dissipation for weak solutions of fluid equations, both in the presence or absence of a physical boundary. Boundary dissipation, which can occur at both the time and the spatial boundary, is analyzed by suitably modifying the Duchon & Robert interior distributional approach. One implication of our results is that any bounded Euler solution (compressible or incompressible) arising as a zero viscosity limit of Navier–Stokes solutions cannot have anomalous dissipation supported on a set of dimension smaller than that of the space. This result is sharp, as demonstrated by entropy-producing shock solutions of compressible Euler (Drivas and Eyink in Commun Math Phys 359(2):733–763, 2018. https://doi.org/10.1007/s00220-017-3078-4 ; Majda in Am Math Soc 43(281):93, 1983. https://doi.org/10.1090/memo/0281 ) and by recent constructions of dissipative incompressible Euler solutions (Brue and De Lellis in Commun Math Phys 400(3):1507–1533, 2023. https://doi.org/10.1007/s00220-022-04626-0 624 ; Brue et al. in Commun Pure App Anal, 2023), as well as passive scalars (Colombo et al. in Ann PDE 9(2):21–48, 2023. https://doi.org/10.1007/s40818-023-00162-9 ; Drivas et al. in Arch Ration Mech Anal 243(3):1151–1180, 2022. https://doi.org/10.1007/s00205-021-01736-2 ). For L t q L x r suitable Leray–Hopf solutions of the d - dimensional Navier–Stokes equation we prove a bound of the dissipation in terms of the Parabolic Hausdorff measure P s , which gives s = d - 2 as soon as the solution lies in the Prodi–Serrin class. In the three-dimensional case, this matches with the Caffarelli–Kohn–Nirenberg partial regularity.
ISSN:1422-6928
1422-6952
DOI:10.1007/s00021-024-00894-z