Deep Spectral-Based Shape Features for Alzheimer's Disease Classification
Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are the most prevalent neurodegenerative brain diseases in elderly population. Recent studies on medical imaging and biological data have shown morphological alterations of subcortical structures in patients with these pathologies. In this...
Saved in:
Published in | Spectral and Shape Analysis in Medical Imaging Vol. 10126; pp. 15 - 24 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2016
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are the most prevalent neurodegenerative brain diseases in elderly population. Recent studies on medical imaging and biological data have shown morphological alterations of subcortical structures in patients with these pathologies. In this work, we take advantage of these structural deformations for classification purposes. First, triangulated surface meshes are extracted from segmented hippocampus structures in MRI and point-to-point correspondences are established among population of surfaces using a spectral matching method. Then, a deep learning variational auto-encoder is applied on the vertex coordinates of the mesh models to learn the low dimensional feature representation. A multi-layer perceptrons using softmax activation is trained simultaneously to classify Alzheimer’s patients from normal subjects. Experiments on ADNI dataset demonstrate the potential of the proposed method in classification of normal individuals from early MCI (EMCI), late MCI (LMCI), and AD subjects with classification rates outperforming standard SVM based approach. |
---|---|
Bibliography: | Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. |
ISBN: | 3319512366 9783319512365 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-51237-2_2 |