Deep Spectral-Based Shape Features for Alzheimer's Disease Classification

Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are the most prevalent neurodegenerative brain diseases in elderly population. Recent studies on medical imaging and biological data have shown morphological alterations of subcortical structures in patients with these pathologies. In this...

Full description

Saved in:
Bibliographic Details
Published inSpectral and Shape Analysis in Medical Imaging Vol. 10126; pp. 15 - 24
Main Authors Shakeri, Mahsa, Lombaert, Herve, Tripathi, Shashank, Kadoury, Samuel
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2016
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alzheimer’s disease (AD) and mild cognitive impairment (MCI) are the most prevalent neurodegenerative brain diseases in elderly population. Recent studies on medical imaging and biological data have shown morphological alterations of subcortical structures in patients with these pathologies. In this work, we take advantage of these structural deformations for classification purposes. First, triangulated surface meshes are extracted from segmented hippocampus structures in MRI and point-to-point correspondences are established among population of surfaces using a spectral matching method. Then, a deep learning variational auto-encoder is applied on the vertex coordinates of the mesh models to learn the low dimensional feature representation. A multi-layer perceptrons using softmax activation is trained simultaneously to classify Alzheimer’s patients from normal subjects. Experiments on ADNI dataset demonstrate the potential of the proposed method in classification of normal individuals from early MCI (EMCI), late MCI (LMCI), and AD subjects with classification rates outperforming standard SVM based approach.
Bibliography:Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.
ISBN:3319512366
9783319512365
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-51237-2_2