Ultrasound-based techniques for the diagnosis of liver steatosis
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of diffuse liver disease. An accurate estimate of the fat in the liver is important in the diagnostic work-up of patients with NAFLD because the degree of liver steatosis is linked to the metabolic syndrome and the cardiovascular risk. U...
Saved in:
Published in | World journal of gastroenterology : WJG Vol. 25; no. 40; pp. 6053 - 6062 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Baishideng Publishing Group Inc
28.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Non-alcoholic fatty liver disease (NAFLD) is the leading cause of diffuse liver disease. An accurate estimate of the fat in the liver is important in the diagnostic work-up of patients with NAFLD because the degree of liver steatosis is linked to the metabolic syndrome and the cardiovascular risk. Ultrasound (US) B-mode imaging allows to subjectively estimate the fatty infiltration in the liver; however, it has a low performance for the detection of mild steatosis. Quantitative US is based on the analysis of the radiofrequency echoes detected by an US system, and it allows to calculate a backscatter coefficient or an attenuation coefficient or the sound speed. The estimation of the backscatter coefficient is rather cumbersome and requires the use of a phantom for addressing all sources of variability. Controlled attenuation parameter (CAP) available on the FibroScan
system (Echosens, France) measures the attenuation of the US beam. CAP is accurate in grading fatty infiltration-even though there is an overlap between consecutive grade of liver steatosis-and the values are not influenced by liver fibrosis. Several US manufacturers are developing or have already developed software for quantifying the attenuation of the US beam. Preliminary results show that proprietary technologies implemented in US systems seem more accurate than CAP for grading liver steatosis. Another available method for quantifying liver steatosis is based on the computation of the sound speed and the initial results appear promising. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Author contributions: Ferraioli G designed the review outline; Ferraioli G and Soares Monteiro LB performed the literature research; Ferraioli G and Soares Monteiro LB extracted the data from the literature search; Ferraioli G wrote the paper. Both authors approved the final version of the manuscript. Telephone: +39-382-501753 Corresponding author: Giovanna Ferraioli, MD, Academic Research, Doctor, Clinical Sciences and Infectious Diseases Department, Fondazione IRCCS Policlinico S. Matteo, University of Pavia, Viale Camillo Golgi 19, Pavia 27100, Italy. giovanna.ferraioli@unipv.it |
ISSN: | 2219-2840 1007-9327 2219-2840 |
DOI: | 10.3748/wjg.v25.i40.6053 |