Asynchronous box calculus

The starting point of this paper is an algebraic Petri net framework allowing one to express net compositions, such as iteration and parallel composition, as well as transition synchronisation and restriction. We enrich the original model by introducing new constructs supporting asynchronous interpr...

Full description

Saved in:
Bibliographic Details
Published inFundamenta informaticae Vol. 54; no. 4; pp. 295 - 344
Main Authors Devillers, R, Koutny, M, Klaudel, H, Pommereau, F
Format Journal Article
LanguageEnglish
Published 01.03.2003
Online AccessGet full text

Cover

Loading…
More Information
Summary:The starting point of this paper is an algebraic Petri net framework allowing one to express net compositions, such as iteration and parallel composition, as well as transition synchronisation and restriction. We enrich the original model by introducing new constructs supporting asynchronous interprocess communication. Such a communication is made possible thanks to special `buffer' places where different transitions (processes) may deposit and remove tokens. We also provide an abstraction mechanism, which hides buffer places, effectively making them private to the processes communicating through them. We then provide an algebra of process expressions, whose constants and operators directly correspond to those used in the Petri net framework. Such a correspondence is used to associate nets to process expressions in a compositional way. That the resulting algebra of expressions is consistent with the net algebra is demonstrated by showing that an expression and the corresponding net generate isomorphic transition systems. This results in the Asynchronous Box Calculus (or ABC), which is a coherent dual model, based on Petri nets and process expressions, suitable for modelling and analyzing distributed systems whose components can interact using both synchronous and asynchronous communication.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0169-2968