Lorentz chaotic trigonometric function pedigree based arithmetic optimization algorithm

With the increasing complexity and difficulty of numerical optimization problems in the real world, many efficient meta-heuristic optimization methods have been proposed to solve these problems. The arithmetic optimization algorithm (AOA) design is inspired by the distribution behavior of the main a...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 44; no. 3; p. 3527
Main Authors Xu-Dong, Li, Jie-Sheng, Wang, Wen-Kuo, Hao, Hao-Ming, Song, Xiao-Rui, Zhao
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-221098

Cover

Abstract With the increasing complexity and difficulty of numerical optimization problems in the real world, many efficient meta-heuristic optimization methods have been proposed to solve these problems. The arithmetic optimization algorithm (AOA) design is inspired by the distribution behavior of the main arithmetic operators in mathematics, including multiplication (M), division (D), subtraction (S) and addition (A). In order to improve the global search ability and local development ability of the AOA, the Lorentz triangle search variable step coefficient was proposed based on the broad-spectrum trigonometric functions combined with the Lorentz chaotic mapping strategy, which include a total of 24 search functions in four categories, such as regular trigonometric functions, inverse trigonometric functions, hyperbolic trigonometric functions, and inverse hyperbolic trigonometric functions. The position update was used to improve the convergence speed and accuracy of the algorithm. Through test experiments on benchmark functions and comparison with other well-known meta-heuristic algorithms, the superiority of the proposed improved AOA was proved.
AbstractList With the increasing complexity and difficulty of numerical optimization problems in the real world, many efficient meta-heuristic optimization methods have been proposed to solve these problems. The arithmetic optimization algorithm (AOA) design is inspired by the distribution behavior of the main arithmetic operators in mathematics, including multiplication (M), division (D), subtraction (S) and addition (A). In order to improve the global search ability and local development ability of the AOA, the Lorentz triangle search variable step coefficient was proposed based on the broad-spectrum trigonometric functions combined with the Lorentz chaotic mapping strategy, which include a total of 24 search functions in four categories, such as regular trigonometric functions, inverse trigonometric functions, hyperbolic trigonometric functions, and inverse hyperbolic trigonometric functions. The position update was used to improve the convergence speed and accuracy of the algorithm. Through test experiments on benchmark functions and comparison with other well-known meta-heuristic algorithms, the superiority of the proposed improved AOA was proved.
Author Jie-Sheng, Wang
Xu-Dong, Li
Xiao-Rui, Zhao
Wen-Kuo, Hao
Hao-Ming, Song
Author_xml – sequence: 1
  givenname: Li
  surname: Xu-Dong
  fullname: Xu-Dong, Li
– sequence: 2
  givenname: Wang
  surname: Jie-Sheng
  fullname: Jie-Sheng, Wang
– sequence: 3
  givenname: Hao
  surname: Wen-Kuo
  fullname: Wen-Kuo, Hao
– sequence: 4
  givenname: Song
  surname: Hao-Ming
  fullname: Hao-Ming, Song
– sequence: 5
  givenname: Zhao
  surname: Xiao-Rui
  fullname: Xiao-Rui, Zhao
BookMark eNotzrFOwzAQBmALFYm2MPECkZgDPjuxnRFVlBZFYgDEWDnOJXXV2sFxlj49VmG6X7pP_92CzJx3SMg90EfOOH96264_csaAVuqKzEHJMleVkLOUqShyYIW4IYtxPFAKsmR0Tr5rH9DFc2b22kdrshhs750_YQom6yZnovUuG7C1fUDMGj1im-lg4z6ZRPwQ7cme9YXpY-8vq1ty3enjiHf_c0m-1i-fq01ev79uV891PoDiMe-Eoh1njWxYW0lsUcjSsMoIxQ0wo7siPQ4JGUyo0NBQgKoDUba8wobxJXn46x2C_5lwjLuDn4JLJ3dMqpJxCUrwX39SVhY
ContentType Journal Article
Copyright Copyright IOS Press BV 2023
Copyright_xml – notice: Copyright IOS Press BV 2023
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-221098
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
GroupedDBID .4S
.DC
4.4
5GY
7SC
8FD
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
JQ2
K1G
L7B
L7M
L~C
L~D
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
ID FETCH-LOGICAL-p183t-f680f32b7b2d97ede675c29c683c12caf41061680ce2b74a1b0119f165d39eb23
ISSN 1064-1246
IngestDate Fri Jul 25 10:12:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-p183t-f680f32b7b2d97ede675c29c683c12caf41061680ce2b74a1b0119f165d39eb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2785237186
PQPubID 2046407
ParticipantIDs proquest_journals_2785237186
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2023
Publisher Sage Publications Ltd
Publisher_xml – name: Sage Publications Ltd
SSID ssj0017520
Score 2.3158107
SecondaryResourceType retracted_publication
Snippet With the increasing complexity and difficulty of numerical optimization problems in the real world, many efficient meta-heuristic optimization methods have...
SourceID proquest
SourceType Aggregation Database
StartPage 3527
SubjectTerms Algorithms
Arithmetic
Design optimization
Heuristic methods
Mathematical analysis
Multiplication
Operators (mathematics)
Optimization algorithms
Searching
Subtraction
Triangles
Trigonometric functions
Title Lorentz chaotic trigonometric function pedigree based arithmetic optimization algorithm
URI https://www.proquest.com/docview/2785237186
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc6eGEPiG1M42OTH_YWGRo7jZNHvqLCCntoK_pW2YkDlaBBkD5Q8cdzF7tp2GDa9hJFjmVFuV_ufne-OxPyXUQmSEWOaeUBOChZO2Yx1zkzMgxNbJSOqvLo84uwOwzORp1Rq_XUrC4p9V46f7Wu5H-kCmMgV6yS_QfJ1ovCANyDfOEKEobrX8m4V2BvpTlW7xbYeLUEVxuLFPCUrNRDk1VJ9w4MFLjVxkOTlXngHZfXt1i86BWgMG5dJaanbq6K6tEbhHVSd-8sK8Dks_n80bWCrpn5aMaOXZZvb1Kn50wM618bO3ypnLGs9oOm7MesitZ2VbHUhgU7d2et9As320UmuPglMtFMOrJZfctEJVS1QIYYsAvXCNuOgffEotge0LHQz7Y_pMOhaChb4I7yNSsgOEapk7PTpM84uLT2mOuXvbYvfo6TYa83HpyMBu_IKpcSN_lXDw6PD5N6F0p2uO1m4d7U1nfi8vuNxX-z4hU1GWyQdSciemAB8oG0zPQjed_oNPmJXDqoUAcV-gIqdAEVuoAKraBCl1ChTajQGiqbZJicDI66zJ2pwe5AeZcsD6N2LriWmmexNJkBhzHlcRpGIvV5qvIAYwQwKTUwKVC-xqaAuR92MhEbzcVnsjItpuYLodK0FVAg-KsDpKG-0pmfxUqAwxqAWudbZHfxXcbup3kYcxl1uABCFG7_-fEOWVtiapeslPcz8xX4X6m_OTE9A8EuYPs
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lorentz+chaotic+trigonometric+function+pedigree+based+arithmetic+optimization+algorithm&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Xu-Dong%2C+Li&rft.au=Jie-Sheng%2C+Wang&rft.au=Wen-Kuo%2C+Hao&rft.au=Hao-Ming%2C+Song&rft.date=2023-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=44&rft.issue=3&rft.spage=3527&rft_id=info:doi/10.3233%2FJIFS-221098&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon