Lorentz chaotic trigonometric function pedigree based arithmetic optimization algorithm

With the increasing complexity and difficulty of numerical optimization problems in the real world, many efficient meta-heuristic optimization methods have been proposed to solve these problems. The arithmetic optimization algorithm (AOA) design is inspired by the distribution behavior of the main a...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 44; no. 3; p. 3527
Main Authors Xu-Dong, Li, Jie-Sheng, Wang, Wen-Kuo, Hao, Hao-Ming, Song, Xiao-Rui, Zhao
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-221098

Cover

Loading…
More Information
Summary:With the increasing complexity and difficulty of numerical optimization problems in the real world, many efficient meta-heuristic optimization methods have been proposed to solve these problems. The arithmetic optimization algorithm (AOA) design is inspired by the distribution behavior of the main arithmetic operators in mathematics, including multiplication (M), division (D), subtraction (S) and addition (A). In order to improve the global search ability and local development ability of the AOA, the Lorentz triangle search variable step coefficient was proposed based on the broad-spectrum trigonometric functions combined with the Lorentz chaotic mapping strategy, which include a total of 24 search functions in four categories, such as regular trigonometric functions, inverse trigonometric functions, hyperbolic trigonometric functions, and inverse hyperbolic trigonometric functions. The position update was used to improve the convergence speed and accuracy of the algorithm. Through test experiments on benchmark functions and comparison with other well-known meta-heuristic algorithms, the superiority of the proposed improved AOA was proved.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-221098