A big data classification approach using LDA with an enhanced SVM method for ECG signals in cloud computing

Electrocardiographic (ECG) signals often consist of unwanted noises and speckles. In order to remove the noises, various image processing filters are used in various studies. In this paper, FIR and IIR filters are initially used to remove the linear and nonlinear delay present in the input ECG signa...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 77; no. 8; pp. 10195 - 10215
Main Authors Varatharajan, R, Gunasekaran Manogaran, Priyan, M K
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Nature B.V 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electrocardiographic (ECG) signals often consist of unwanted noises and speckles. In order to remove the noises, various image processing filters are used in various studies. In this paper, FIR and IIR filters are initially used to remove the linear and nonlinear delay present in the input ECG signal. In addition, filters are used to remove unwanted frequency components from the input ECG signal. Linear Discriminant Analysis (LDA) is used to reduce the features present in the input ECG signal. Support Vector Machines (SVM) is widely used for pattern recognition. However, traditional SVM method does not applicable to compute different characteristics of the features of data sets. In this paper, we use SVM model with a weighted kernel function method to classify more features from the input ECG signal. SVM model with a weighted kernel function method is significantly identifies the Q wave, R wave and S wave in the input ECG signal to classify the heartbeat level such as Left Bundle Branch Block (LBBB), Right Bundle Branch Block (RBBB), Premature Ventricular Contraction (PVC) and Premature Atrial Contractions (PACs). The performance of the proposed Linear Discriminant Analysis (LDA) with enhanced kernel based Support Vector Machine (SVM) method is comparatively analyzed with other machine learning approaches such as Linear Discriminant Analysis (LDA) with multilayer perceptron (MLP), Linear Discriminant Analysis (LDA) with Support Vector Machine (SVM), and Principal Component Analysis (PCA) with Support Vector Machine (SVM). The calculated RMSE, MAPE, MAE, R2 and Q2 for the proposed Linear Discriminant Analysis (LDA) with enhanced kernel based Support Vector Machine (SVM) method is low when compared with other approaches such as LDA with MLP, and PCA with SVM and LDA with SVM. Finally, Sensitivity, Specificity and Mean Square Error (MSE) are calculated to prove the effectiveness of the proposed Linear Discriminant Analysis (LDA) with an enhanced kernel based Support Vector Machine (SVM) method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-017-5318-1