Collagen crosslinking impacts stromal wound healing and haze formation in a rabbit phototherapeutic keratectomy model

Purpose: The purpose of this study was to evaluate the elastic modulus, keratocyte-fibroblast-myocyte transformation, and haze formation of the corneal stroma following combined phototherapeutic keratectomy (PTK) and epithelium-off UV-A/riboflavin corneal collagen crosslinking (CXL) using an in vivo...

Full description

Saved in:
Bibliographic Details
Published inMolecular vision Vol. 29; p. 101
Main Authors Moore, Bret A, Jalilian, Iman, Kim, Soohyun, Mizutani, Makiko, Mukai, Madison, Chang, Connor, Entringer, Alec M, Dhamodaran, Kamesh, Raghunathan, Vijay Krishna, Teixeira, Leandro B C, Murphy, Christopher J, Thomasy, Sara M
Format Journal Article
LanguageEnglish
Published Atlanta Molecular Vision 16.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Purpose: The purpose of this study was to evaluate the elastic modulus, keratocyte-fibroblast-myocyte transformation, and haze formation of the corneal stroma following combined phototherapeutic keratectomy (PTK) and epithelium-off UV-A/riboflavin corneal collagen crosslinking (CXL) using an in vivo rabbit model. Methods: Rabbits underwent PTK and CXL, PTK only, or CXL 35 days before PTK. Rebound tonometry, Fourier-domain optical coherence tomography, and ultrasound pachymetry were performed on days 7, 14, 21, 42, 70, and 90 post-operatively. Atomic force microscopy, histologic inflammation, and immunohistochemistry for α-smooth muscle actin (α-SMA) were assessed post-mortem. Results: Stromal haze formation following simultaneous PTK and CXL was significantly greater than in corneas that received PTK only and persisted for more than 90 days. No significant difference in stromal haze was noted between groups receiving simultaneous CXL and PTK and those receiving CXL before PTK. Stromal inflammation did not differ between groups at any time point, although the intensity of α-SMA over the number of nuclei was significantly greater at day 21 between groups receiving simultaneous CXL and PTK and those receiving CXL before PTK. The elastic modulus was significantly greater in corneas receiving simultaneous CXL and PTK compared with those receiving PTK alone. Conclusions: We showed that stromal haze formation and stromal stiffness is significantly increased following CXL, regardless of whether it is performed at or before the time of PTK. Further knowledge of the biophysical cues involved in determining corneal wound healing duration and outcomes will be important for understanding scarring following CXL and for the development of improved therapeutic options.
ISSN:1090-0535
1090-0535