Normalized ground state solutions of Schrödinger-KdV system in R3
In this paper, we study the coupled Schrödinger-KdV system -Δu+λ1u=u3+βuvinR3,-Δv+λ2v=12v2+12βu2inR3subject to the mass constraints ∫R3|u|2dx=a,∫R3|v|2dx=b,where a,b>0 are given constants, β>0, and the frequencies λ1,λ2 arise as Lagrange multipliers. The system exhibits L2-supercritical growth...
Saved in:
Published in | Zeitschrift für angewandte Mathematik und Physik Vol. 75; no. 6 |
---|---|
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0044-2275 1420-9039 |
DOI | 10.1007/s00033-024-02330-8 |
Cover
Summary: | In this paper, we study the coupled Schrödinger-KdV system -Δu+λ1u=u3+βuvinR3,-Δv+λ2v=12v2+12βu2inR3subject to the mass constraints ∫R3|u|2dx=a,∫R3|v|2dx=b,where a,b>0 are given constants, β>0, and the frequencies λ1,λ2 arise as Lagrange multipliers. The system exhibits L2-supercritical growth. Using a novel constraint minimization approach, we demonstrate the existence of a local minimum solution to the system. Furthermore, we establish the existence of normalized ground state solutions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0044-2275 1420-9039 |
DOI: | 10.1007/s00033-024-02330-8 |