Er3+ doped nanoparticles as upconversion thermometer probes in confined fluids
Non-contact temperature measurement at the nanoscale by photoluminescence using a nano-sensor in a confined fluid has been performed in the present work. Upconversion lanthanide-doped nanoparticles applied to ratiometric thermometry could be considered as a self-referenced nanosensor. Gadolinium ort...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 25; no. 28; pp. 19254 - 19265 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
19.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Non-contact temperature measurement at the nanoscale by photoluminescence using a nano-sensor in a confined fluid has been performed in the present work. Upconversion lanthanide-doped nanoparticles applied to ratiometric thermometry could be considered as a self-referenced nanosensor. Gadolinium orthovanadate (GdVO4) nanoparticles doped with Yb3+ and Er3+ were synthesized and then dispersed in an ester-based fluid. Rheological measurements show that the viscosity of the dispersed NP suspension remains unchanged up to a shear rate of 10−4 s−1 at 393 K. The NP suspension allows luminescence intensity ratio (LIR) thermometry up to 473 K with a relative sensitivity of 1.17% K−1 with a NIR laser. Then, the temperature calibration by coupling the high pressure (1.08 GPa max) confirmed the applicability of NPs as a thermosensor in a variable pressure environment. According to these results, the fluid containing GdVO4:Yb3+/Er3+ nanoparticles can be used for temperature sensing in a pressurized environment for further application in tribology. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/d3cp02218h |