Synthetic genetic circuits to uncover and enforce the OCT4 trajectories of successful reprogramming of human fibroblasts
Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the succes...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
25.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reprogramming human fibroblasts to induced pluripotent stem cells (iPSCs) is inefficient, with heterogeneity among transcription factor (TF) trajectories driving divergent cell states. Nevertheless, the impact of TF dynamics on reprogramming efficiency remains uncharted. Here, we identify the successful reprogramming trajectories of the core pluripotency TF, OCT4, and design a genetic controller that enforces such trajectories with high precision. By combining a genetic circuit that generates a wide range of OCT4 trajectories with live-cell imaging, we track OCT4 trajectories with clonal resolution and find that a distinct constant OCT4 trajectory is required for colony formation. We then develop a synthetic genetic circuit that yields a tight OCT4 distribution around the identified trajectory and outperforms in terms of reprogramming efficiency other circuits that less accurately regulate OCT4. Our synthetic biology approach is generalizable for identifying and enforcing TF dynamics for cell fate programming applications. |
---|---|
DOI: | 10.1101/2023.01.25.525529 |