Multi-View Graph Convolutional Network and Its Applications on Neuroimage Analysis for Parkinson's Disease
Parkinson's Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in recent years on predictive or disease progression modeling of PD using clinical and...
Saved in:
Published in | AMIA ... Annual Symposium proceedings Vol. 2018; pp. 1147 - 1156 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Medical Informatics Association
2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Parkinson's Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in recent years on predictive or disease progression modeling of PD using clinical and biomarkers data. Neuroimaging, as another important information source for neurodegenerative disease, has also arisen considerable interests from the PD community. In this paper, we propose a deep learning method based on Graph Convolutional Networks (GCN) for fusing multiple modalities of brain images in relationship prediction which is useful for distinguishing PD cases from controls. On Parkinson's Progression Markers Initiative (PPMI) cohort, our approach achieved 0.9537±0.0587 AUC, compared with 0.6443±0.0223 AUC achieved by traditional approaches such as PCA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1942-597X 1559-4076 |