VANTAGE6: an open source priVAcy preserviNg federaTed leArninG infrastructurE for Secure Insight eXchange
Answering many of the research questions in the field of cancer informatics requires incorporating and centralizing data that are hosted by different parties. Federated Learning (FL) has emerged as a new approach in which a global model can be generated without disclosing private patient data by kee...
Saved in:
Published in | AMIA ... Annual Symposium proceedings Vol. 2020; pp. 870 - 877 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Medical Informatics Association
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Answering many of the research questions in the field of cancer informatics requires incorporating and centralizing data that are hosted by different parties. Federated Learning (FL) has emerged as a new approach in which a global model can be generated without disclosing private patient data by keeping them at their original location. Flexible, user-friendly, and robust infrastructures are crucial for bringing FL solutions to the day-to-day work of the cancer epidemiologist. In this paper, we present an open source priVAcy preserviNg federaTed leArninG infrastructurE for Secure Insight eXchange, VANTAGE6. We provide a detailed description of its conceptual design, modular architecture, and components. We also show a few examples where VANTAGE6 has been successfully used in research on observational cancer data. Developing and deploying technology to support federated analyses - such as VANTAGE6 - will pave the way for the adoption and mainstream practice of this new approach for analyzing decentralized data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1942-597X 1559-4076 |