A neuro-fuzzy approach to classification of ECG signals for ischemic heart disease diagnosis
The paper focuses on the neuro-fuzzy classifier called Fuzzy-Gaussian Neural Network (FGNN) to recognize the ECG signals for Ischemic Heart Disease (IHD) diagnosis. The proposed ECG processing cascade has two main stages: (a) Feature extraction from the QRST zone of ECG signals using either the Prin...
Saved in:
Published in | AMIA ... Annual Symposium proceedings Vol. 2003; pp. 494 - 498 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Medical Informatics Association
2003
|
Subjects | |
Online Access | Get full text |
ISSN | 1942-597X 1559-4076 |
Cover
Summary: | The paper focuses on the neuro-fuzzy classifier called Fuzzy-Gaussian Neural Network (FGNN) to recognize the ECG signals for Ischemic Heart Disease (IHD) diagnosis. The proposed ECG processing cascade has two main stages: (a) Feature extraction from the QRST zone of ECG signals using either the Principal Component Analysis (PCA) or the Discrete Cosine Transform (DCT); (b) Pattern classification for IHD diagnosis using the FGNN. We have performed the software implementation and have experimented the proposed neuro-fuzzy model for IHD diagnosis. We have used an ECG database of 40 subjects, where 20 subjects are IHD patients and the other 20 are normal ones. The best performance has been of 100% IHD recognition score. The result is exciting as much as we have used only one lead (V5) of ECG records as input data, while the current diagnosis approaches require the set of 12 lead ECG signals! |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1942-597X 1559-4076 |