High level, context dependent misincorporation of lysine for arginine in Saccharomyces cerevisiae a1 homeodomain expressed in Escherichia coli

The Saccharomyces cerevisiae a1 homeodomain is expressed as a soluble protein in Escherichia coli when cultured in minimal medium. Nuclear magnetic resonance (NMR) spectra of previously prepared a1 homeodomain samples contained a subset of doubled and broadened resonances. Mass spectroscopic and NMR...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 7; no. 2; pp. 500 - 503
Main Authors Forman, M D, Stack, R F, Masters, P S, Hauer, C R, Baxter, S M
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.02.1998
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Saccharomyces cerevisiae a1 homeodomain is expressed as a soluble protein in Escherichia coli when cultured in minimal medium. Nuclear magnetic resonance (NMR) spectra of previously prepared a1 homeodomain samples contained a subset of doubled and broadened resonances. Mass spectroscopic and NMR analysis demonstrates that the heterogeneity is largely due to a lysine misincorporation at the arginine (Arg) 115 site. Arg 115 is coded by the 5'-AGA-3' sequence, which is quite rare in E. coli genes. Lower level mistranslation at three other rare arginine codons also occurs. The percentage of lysine for arginine misincorporation in a1 homeodomain production is dependent on media composition. The dnaY gene, which encodes the rare 5'-AGA-3' tRNA(ARG), was co-expressed in E. coli with the a1-encoding plasmid to produce a homogeneous recombinant a1 homeodomain. Co-expression of the dnaY gene completely blocks mistranslation of arginine to lysine during a1 overexpression in minimal media, and homogeneous protein is produced.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0961-8368
1469-896X
DOI:10.1002/pro.5560070231