Efficient Estimation of Agent Networks
Collective adaptive systems (CAS) are characterized by the presence of many agents and an environment which interact with each other. As a consequence, they give rise to global dynamics which cannot be analyzed by considering agents in isolation. While the modeling of CAS via agent (reaction) networ...
Saved in:
Published in | Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning Vol. 13703; pp. 199 - 214 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer
2022
Springer Nature Switzerland |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3031197585 9783031197581 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-19759-8_13 |
Cover
Loading…
Summary: | Collective adaptive systems (CAS) are characterized by the presence of many agents and an environment which interact with each other. As a consequence, they give rise to global dynamics which cannot be analyzed by considering agents in isolation. While the modeling of CAS via agent (reaction) networks gained momentum, obtaining reliable forecasts is computationally difficult because parameters are often subject to uncertainty. It has been therefore recently proposed to obtain reliable estimates on global dynamics of agent networks from local agent behavior. To this end, dependencies among agents were replaced by exogenous parameters, allowing one thus to estimate the global dynamics via agent decoupling. The present work introduces the notion of estimation equivalence, a model reduction technique for systems of nonlinear differential equations that allows one to replace the aforementioned decoupled model by a smaller one which is easier to analyze. We demonstrate the framework on a multi-class SIRS model from epidemiology and obtain a speed-up factor that is proportional to the number of population classes. |
---|---|
ISBN: | 3031197585 9783031197581 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-19759-8_13 |