Efficient Estimation of Agent Networks

Collective adaptive systems (CAS) are characterized by the presence of many agents and an environment which interact with each other. As a consequence, they give rise to global dynamics which cannot be analyzed by considering agents in isolation. While the modeling of CAS via agent (reaction) networ...

Full description

Saved in:
Bibliographic Details
Published inLeveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning Vol. 13703; pp. 199 - 214
Main Authors Leguizamon-Robayo, Alexander, Tschaikowski, Max
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3031197585
9783031197581
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-19759-8_13

Cover

Loading…
More Information
Summary:Collective adaptive systems (CAS) are characterized by the presence of many agents and an environment which interact with each other. As a consequence, they give rise to global dynamics which cannot be analyzed by considering agents in isolation. While the modeling of CAS via agent (reaction) networks gained momentum, obtaining reliable forecasts is computationally difficult because parameters are often subject to uncertainty. It has been therefore recently proposed to obtain reliable estimates on global dynamics of agent networks from local agent behavior. To this end, dependencies among agents were replaced by exogenous parameters, allowing one thus to estimate the global dynamics via agent decoupling. The present work introduces the notion of estimation equivalence, a model reduction technique for systems of nonlinear differential equations that allows one to replace the aforementioned decoupled model by a smaller one which is easier to analyze. We demonstrate the framework on a multi-class SIRS model from epidemiology and obtain a speed-up factor that is proportional to the number of population classes.
ISBN:3031197585
9783031197581
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-19759-8_13