Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy

Probing into water Surface phenomena at the air–water interface are of vital importance in many situations, from oceanography to atmospheric and environmental chemistry. An unanswered question in the field is how thin is the interfacial region — or how soon do the properties of bulk liquid water rea...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 474; no. 7350; pp. 192 - 195
Main Authors Stiopkin, Igor V., Weeraman, Champika, Pieniazek, Piotr A., Shalhout, Fadel Y., Skinner, James L., Benderskii, Alexander V.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.06.2011
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Probing into water Surface phenomena at the air–water interface are of vital importance in many situations, from oceanography to atmospheric and environmental chemistry. An unanswered question in the field is how thin is the interfacial region — or how soon do the properties of bulk liquid water reappear as the interface is crossed. Using spectroscopy to probe the 'free OD' vibrational mode of water molecules with an oxygen–deuterium bond protruding from the surface and theoretical modelling to interpret the results, Stiopkin et al . find that water molecules straddling the interface form hydrogen bonds that are only slightly weaker than those in bulk water. This suggests a remarkably rapid onset of bulk-phase behaviour, and an extremely short 'healing length' for the interface on crossing from the air into the water phase. The air–water interface is perhaps the most common liquid interface. It covers more than 70 per cent of the Earth’s surface and strongly affects atmospheric, aerosol and environmental chemistry. The air–water interface has also attracted much interest as a model system that allows rigorous tests of theory, with one fundamental question being just how thin it is. Theoretical studies have suggested a surprisingly short ‘healing length’ of about 3 ångströms (1 Å = 0.1 nm), with the bulk-phase properties of water recovered within the top few monolayers 1 , 2 , 3 . However, direct experimental evidence has been elusive owing to the difficulty of depth-profiling the liquid surface on the ångström scale. Most physical, chemical and biological properties of water, such as viscosity, solvation, wetting and the hydrophobic effect, are determined by its hydrogen-bond network. This can be probed by observing the lineshape of the OH-stretch mode, the frequency shift of which is related to the hydrogen-bond strength 4 , 5 , 6 . Here we report a combined experimental and theoretical study of the air–water interface using surface-selective heterodyne-detected vibrational sum frequency spectroscopy to focus on the ‘free OD’ transition found only in the topmost water layer. By using deuterated water and isotopic dilution to reveal the vibrational coupling mechanism, we find that the free OD stretch is affected only by intramolecular coupling to the stretching of the other OD group on the same molecule. The other OD stretch frequency indicates the strength of one of the first hydrogen bonds encountered at the surface; this is the donor hydrogen bond of the water molecule straddling the interface, which we find to be only slightly weaker than bulk-phase water hydrogen bonds. We infer from this observation a remarkably fast onset of bulk-phase behaviour on crossing from the air into the water phase.
ISSN:0028-0836
1476-4687
DOI:10.1038/nature10173