Application of Computational Mass Transfer (IV) Fixed-Bed Catalytic Reaction
In this chapter, an exothermic catalytic reaction process is simulated using computational mass transfer (CMT) models as presented in Chap. 10.1007/978-981-10-2498-6_1. The difference between the simulation in this chapter from those in Chaps. 10.1007/978-981-10-2498-6_2–10.1007/978-981-10-2498-6_4...
Saved in:
Published in | Introduction to Computational Mass Transfer pp. 175 - 201 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Singapore
Springer Singapore Pte. Limited
2016
Springer Singapore |
Series | Heat and Mass Transfer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this chapter, an exothermic catalytic reaction process is simulated using computational mass transfer (CMT) models as presented in Chap. 10.1007/978-981-10-2498-6_1. The difference between the simulation in this chapter from those in Chaps. 10.1007/978-981-10-2498-6_2–10.1007/978-981-10-2498-6_4 is that chemical reaction is involved. The source term Sn in the species conservation equation represents not only the mass transferred from one phase to the other, but also the mass created or depleted by a chemical reaction. Thus the application of the CMT model is extended to simulating the chemical reactor. The simulation is carried out on a wall-cooled catalytic reactor for the synthesis of vinyl acetate from acetic acid and acetylene using both c′2¯-εc′\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\overline{{c^{{{\prime }2}} }} - \varepsilon_{{c^{\prime}}}$$\end{document} model and Reynolds mass flux model. The simulated axial concentration and temperature distributions are in agreement with the experimental measurement. As the distribution of μt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu_{\text{t}}$$\end{document} shows dissimilarity with Dt and αt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\alpha_{\text{t}}$$\end{document}, the Sct\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Sc_{\text{t}}$$\end{document} or Prt\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Pr_{\text{t}}$$\end{document} are thus varying throughout the reactor. The anisotropic axial and radial turbulent mass transfer diffusivity are predicted where the wavy shape of axial diffusivity Dt,x along the radial direction indicates the important influence of catalysis porosity distribution on the performance of a reactor. |
---|---|
ISBN: | 9811024979 9789811024979 |
ISSN: | 1860-4846 1860-4854 |
DOI: | 10.1007/978-981-10-2498-6_5 |