A feedback control system for high-fidelity digital microfluidics

Digital microfluidics (DMF) is a technique in which discrete droplets are manipulated by applying electrical fields to an array of electrodes. In an ideal DMF system, each application of driving potential would cause a targeted droplet to move onto an energized electrode (i.e., perfect fidelity betw...

Full description

Saved in:
Bibliographic Details
Published inLab on a chip Vol. 11; no. 3; pp. 535 - 540
Main Authors Shih, Steve C C, Fobel, Ryan, Kumar, Paresh, Wheeler, Aaron R
Format Journal Article
LanguageEnglish
Published England 07.02.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Digital microfluidics (DMF) is a technique in which discrete droplets are manipulated by applying electrical fields to an array of electrodes. In an ideal DMF system, each application of driving potential would cause a targeted droplet to move onto an energized electrode (i.e., perfect fidelity between driving voltage and actuation); however, in real systems, droplets are sometimes observed to resist movement onto particular electrodes. Here, we implement a sensing and feedback control system in which all droplet movements are monitored, such that when a movement failure is observed, additional driving voltages can be applied until the droplet completes the desired operation. The new system was evaluated for a series of liquids including water, methanol, and cell culture medium containing fetal bovine serum, and feedback control was observed to result in dramatic improvements in droplet actuation fidelity and velocity. The utility of the new system was validated by implementing an enzyme kinetics assay with continuous mixing. The new platform for digital microfluidics is simple and inexpensive and thus should be useful for scientists and engineers who are developing automated analysis platforms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1473-0197
1473-0189
DOI:10.1039/c0lc00223b