Induction of viral mimicry upon loss of DHX9 and ADAR1 in breast cancer cells
Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The interferon inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for ADA...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
31.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Detection of viral double-stranded RNA (dsRNA) is an important component of innate immunity. However, many endogenous RNAs containing double-stranded regions can be misrecognized and activate innate immunity. The interferon inducible ADAR1-p150 suppresses dsRNA sensing, an essential function for ADAR1 in many cancers, including breast. Although ADAR1-p150 has been well established in this role, the functions of the constitutively expressed ADAR1-p110 isoform are less understood. We used proximity labeling to identify putative ADAR1-p110 interacting proteins in breast cancer cell lines. Of the proteins identified, the RNA helicase DHX9 was of particular interest. Knockdown of DHX9 in ADAR1-dependent cell lines caused cell death and activation of the dsRNA sensor PKR. In ADAR1-independent cell lines, combined knockdown of DHX9 and ADAR1, but neither alone, caused activation of multiple dsRNA sensing pathways leading to a viral mimicry phenotype. Together, these results reveal an important role for DHX9 in suppressing dsRNA sensing by multiple pathways.Competing Interest StatementThe authors have declared no competing interest. |
---|---|
DOI: | 10.1101/2023.02.27.530307 |