Towards a Benchmark for Sedimentary Facies Classification: Applied to the Netherlands F3 Block

In this paper, we attempt to provide a new benchmark for image seismic interpretation tasks in a public seismic dataset (Netherlands F3 Block). For this, techniques such as data augmentation together with five different deep network architectures were used, as well as the application of focal loss f...

Full description

Saved in:
Bibliographic Details
Published inInformation Management and Big Data Vol. 1410; pp. 211 - 222
Main Authors Campos Trinidad, Maykol J., Arauco Canchumuni, Smith W., Cavalcanti Pacheco, Marco Aurelio
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesCommunications in Computer and Information Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we attempt to provide a new benchmark for image seismic interpretation tasks in a public seismic dataset (Netherlands F3 Block). For this, techniques such as data augmentation together with five different deep network architectures were used, as well as the application of focal loss function. Our experiments achieved an improvement in all evaluation metrics cited at the current benchmark. For instance, we managed to improve in 3.7%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.7\%$$\end{document} the pixel accuracy metric and 5.4%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5.4\%$$\end{document} on mean class accuracy for a modified U-Net that uses dilated convolution layers in its bottleneck. In addition to this, the confusion matrices of each model are shown for a better inspection in the classes (sedimentary facies) where the greatest amount of misclassification occurred. The training process of almost all networks took less than one hour to converge. Finally, we applied Conditional Random Fields (CRF) as post-processing in order to obtained smother results. The inferences performed with the best topology, in an inline or section of the test set, is closer to achieving an interpretation at a human level.
ISBN:9783030762278
3030762270
ISSN:1865-0929
1865-0937
DOI:10.1007/978-3-030-76228-5_15