Weakly- and Semi-supervised Graph CNN for Identifying Basal Cell Carcinoma on Pathological Images
Deep learning has been used to identify Basal Cell Carcinoma (BCC) from pathology images. The traditional patch-based strategy has the problem of integrating patch level information into the whole image level prediction. Also, it is often difficult to obtain sufficient high-quality patch labels such...
Saved in:
Published in | Graph Learning in Medical Imaging Vol. 11849; pp. 112 - 119 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Deep learning has been used to identify Basal Cell Carcinoma (BCC) from pathology images. The traditional patch-based strategy has the problem of integrating patch level information into the whole image level prediction. Also, it is often difficult to obtain sufficient high-quality patch labels such as pixel-wise segmentation masks. Benefiting from the recent development of Graph-CNN (GCN), we propose a new weakly- and semi-supervised GCN architecture to model patch-patch relation and provide patch-aware interpretability. Integrating prior knowledge and structure information, without relying on pixel-wise segmentation labels, our whole image level prediction achieves state-of-art performance with mAP 0.9556 and AUC 0.9502. Further visualization demonstrates that our model is implicitly consistent with the pixel-wise segmentation labels, which indicates our model can identify the region of interests without relying on the pixel-wise labels. |
---|---|
Bibliography: | J. Wu and J.-X. Zhong—These authors contributed equally. |
ISBN: | 303035816X 9783030358167 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-35817-4_14 |