Robust Revenue Maximization Under Minimal Statistical Information

We study the problem of multi-dimensional revenue maximization when selling m items to a buyer that has additive valuations for them, drawn from a (possibly correlated) prior distribution. Unlike traditional Bayesian auction design, we assume that the seller has a very restricted knowledge of this p...

Full description

Saved in:
Bibliographic Details
Published inWeb and Internet Economics Vol. 12495; pp. 177 - 190
Main Authors Giannakopoulos, Yiannis, Poças, Diogo, Tsigonias-Dimitriadis, Alexandros
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the problem of multi-dimensional revenue maximization when selling m items to a buyer that has additive valuations for them, drawn from a (possibly correlated) prior distribution. Unlike traditional Bayesian auction design, we assume that the seller has a very restricted knowledge of this prior: they only know the mean μj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _j$$\end{document} and an upper bound σj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _j$$\end{document} on the standard deviation of each item’s marginal distribution. Our goal is to design mechanisms that achieve good revenue against an ideal optimal auction that has full knowledge of the distribution in advance. Informally, our main contribution is a tight quantification of the interplay between the dispersity of the priors and the aforementioned robust approximation ratio. Furthermore, this can be achieved by very simple selling mechanisms. More precisely, we show that selling the items via separate price lotteries achieves an O(logr)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log r)$$\end{document} approximation ratio where r=maxj(σj/μj)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=\max _j(\sigma _j/\mu _j)$$\end{document} is the maximum coefficient of variation across the items. If forced to restrict ourselves to deterministic mechanisms, this guarantee degrades to O(r2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(r^2)$$\end{document}. Assuming independence of the item valuations, these ratios can be further improved by pricing the full bundle. For the case of identical means and variances, in particular, we get a guarantee of O(log(r/m))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log (r/m))$$\end{document} which converges to optimality as the number of items grows large. We demonstrate the optimality of the above mechanisms by providing matching lower bounds. Our tight analysis for the deterministic case resolves an open gap from the work of Azar and Micali [ITCS’13].
Bibliography:Supported by the Alexander von Humboldt Foundation with funds from the German Federal Ministry of Education and Research (BMBF). The last author further acknowledges the support of the German Research Foundation (DFG) within the Research Training Group AdONE (GRK 2201). A full version of this paper can be found at  [27]: arxiv.org/abs/1907.04220.
ISBN:3030649458
9783030649456
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-64946-3_13