Expert Finding in CQA Based on Topic Professional Level Model

In the CQA (Community Question Answering) systems, expert finding is one of the most important subjects. The task of expert finding is aimed at discovering users with relevant expertise or experience for a given question. However, with the increasing amount of information in CQA platform, the questi...

Full description

Saved in:
Bibliographic Details
Published inData Mining and Big Data Vol. 10943; pp. 459 - 465
Main Authors Wang, Shuaiyang, Jiang, Di, Su, Lei, Fan, Zhengyu, Liu, Xi
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the CQA (Community Question Answering) systems, expert finding is one of the most important subjects. The task of expert finding is aimed at discovering users with relevant expertise or experience for a given question. However, with the increasing amount of information in CQA platform, the questioner has to wait for a long time for the response of other users, and the quality of the answers that user receive is not optimistic. In view of the above problems, this paper proposes the Topic Professional Level Model (TPLM) to find the right experts for questions. The model combines both the topic model and the professional level model respectively from the two perspectives of semantic topic of textual content and link structure to calculate the user’s authority under a specific topic. Based on TPLM results, this paper proposed the TPLMRank algorithm to measure user comprehensive score to find the expert users. The experimental results on the Chinese CQA platform-Zhihu dataset show that the expert finding method based on the TPLM is superior to the traditional expert finding method.
ISBN:3319938029
9783319938028
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-93803-5_43