Expert Finding in CQA Based on Topic Professional Level Model
In the CQA (Community Question Answering) systems, expert finding is one of the most important subjects. The task of expert finding is aimed at discovering users with relevant expertise or experience for a given question. However, with the increasing amount of information in CQA platform, the questi...
Saved in:
Published in | Data Mining and Big Data Vol. 10943; pp. 459 - 465 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In the CQA (Community Question Answering) systems, expert finding is one of the most important subjects. The task of expert finding is aimed at discovering users with relevant expertise or experience for a given question. However, with the increasing amount of information in CQA platform, the questioner has to wait for a long time for the response of other users, and the quality of the answers that user receive is not optimistic. In view of the above problems, this paper proposes the Topic Professional Level Model (TPLM) to find the right experts for questions. The model combines both the topic model and the professional level model respectively from the two perspectives of semantic topic of textual content and link structure to calculate the user’s authority under a specific topic. Based on TPLM results, this paper proposed the TPLMRank algorithm to measure user comprehensive score to find the expert users. The experimental results on the Chinese CQA platform-Zhihu dataset show that the expert finding method based on the TPLM is superior to the traditional expert finding method. |
---|---|
ISBN: | 3319938029 9783319938028 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-93803-5_43 |