A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation

Image segmentation plays an important role in the computer vision . However, it is extremely challenging due to low resolution, high noise and blurry boundaries. Recently, region-based models have been widely used to segment such images. The existing models often utilized Gaussian filtering to filte...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 9-10; pp. 5743 - 5765
Main Authors Yu, Haiping, He, Fazhi, Pan, Yiteng
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Image segmentation plays an important role in the computer vision . However, it is extremely challenging due to low resolution, high noise and blurry boundaries. Recently, region-based models have been widely used to segment such images. The existing models often utilized Gaussian filtering to filter images, which caused the loss of edge gradient information. Accordingly, in this paper, a novel local region model based on adaptive bilateral filter is presented for segmenting noisy images. Specifically, we firstly construct a range-based adaptive bilateral filter, in which an image can well be preserved edge structures as well as resisted noise. Secondly, we present a data-driven energy model, which utilizes local information of regions centered at each pixel of image to approximate intensities inside and outside of the circular contour. The estimation approach has improved the accuracy of noisy image segmentation. Thirdly, under the premise of keeping the image original shape, a regularization function is used to accelerate the convergence speed and smoothen the segmentation contour. Experimental results of both synthetic and real images demonstrate that the proposed model is more efficient and robust to noise than the state-of-art region-based models.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-019-08493-1