Leveraging informative missing data to learn about acute respiratory distress syndrome and mortality in long-term hospitalized COVID-19 patients throughout the years of the pandemic

Electronic health records (EHRs) contain a wealth of information that can be used to further precision health. One particular data element in EHRs that is not only under-utilized but oftentimes unaccounted for is missing data. However, missingness can provide valuable information about comorbidities...

Full description

Saved in:
Bibliographic Details
Published inmedRxiv : the preprint server for health sciences
Main Authors Getzen, Emily, Tan, Amelia Lm, Brat, Gabriel, Omenn, Gilbert S, Strasser, Zachary, Long, Qi, Holmes, John H, Mowery, Danielle
Format Journal Article
LanguageEnglish
Published United States 19.12.2023
Online AccessGet more information

Cover

Loading…
More Information
Summary:Electronic health records (EHRs) contain a wealth of information that can be used to further precision health. One particular data element in EHRs that is not only under-utilized but oftentimes unaccounted for is missing data. However, missingness can provide valuable information about comorbidities and best practices for monitoring patients, which could save lives and reduce burden on the healthcare system. We characterize patterns of missing data in laboratory measurements collected at the University of Pennsylvania Hospital System from long-term COVID-19 patients and focus on the changes in these patterns between 2020 and 2021. We investigate how these patterns are associated with comorbidities such as acute respiratory distress syndrome (ARDS), and 90-day mortality in ARDS patients. This work displays how knowledge and experience can change the way clinicians and hospitals manage a novel disease. It can also provide insight into best practices when it comes to patient monitoring to improve outcomes.
DOI:10.1101/2023.12.18.23300181