An integer wavelet transform based scheme for reversible data hiding in encrypted images

In this paper, a novel reversible data hiding (RDH) scheme for encrypted digital images using integer wavelet transform, histogram shifting and orthogonal decomposition is presented. This scheme takes advantage of the Laplacian-like distribution of integer wavelet high-frequency coefficients in high...

Full description

Saved in:
Bibliographic Details
Published inMultidimensional systems and signal processing Vol. 29; no. 3; pp. 1191 - 1202
Main Authors Xiong, Lizhi, Xu, Zhengquan, Shi, Yun-Qing
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a novel reversible data hiding (RDH) scheme for encrypted digital images using integer wavelet transform, histogram shifting and orthogonal decomposition is presented. This scheme takes advantage of the Laplacian-like distribution of integer wavelet high-frequency coefficients in high frequency sub-bands and the independence of orthogonal coefficients to facilitate data hiding operation in encrypted domain, and to keep the reversibility. Experimental results has demonstrated that this scheme outperforms all of other existing RDH schemes in encrypted domain in terms of higher PSNR at the same amount of payload. Compared with the state-of-the-arts, the proposed scheme can be applied to all natural images with higher embedding rate.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0923-6082
1573-0824
DOI:10.1007/s11045-017-0497-5