Applying Space State Models in Human Action Recognition: A Comparative Study
This paper presents comparative results of applying different architectures of generative classifiers (HMM, FHMM, CHMM, Multi-Stream HMM, Parallel HMM ) and discriminative classifier as Conditional Random Fields (CRFs) in human action sequence recognition. The models are fed with histogram of very i...
Saved in:
Published in | Articulated Motion and Deformable Objects Vol. 5098; pp. 53 - 62 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Germany
Springer Berlin / Heidelberg
2008
Springer Berlin Heidelberg |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents comparative results of applying different architectures of generative classifiers (HMM, FHMM, CHMM, Multi-Stream HMM, Parallel HMM ) and discriminative classifier as Conditional Random Fields (CRFs) in human action sequence recognition. The models are fed with histogram of very informative features such as contours evolution and optical-flow. Motion orientation discrimination has been obtained tiling the bounding box of the subject and extracting features from each tile. We run our experiments on two well-know databases, KTH´s database and Weizmann´s. The results show that both type of models reach similar score, being the generative model better when used with optical flow features and being the discriminative one better when uses with shape-context features. |
---|---|
ISBN: | 3540705163 9783540705161 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-540-70517-8_6 |