A mechanism for telomere-specific telomere length regulation

Telomeric DNA, composed of short, direct repeats, is of crucial importance for chromosome stability. Due to intrinsic problems with replicating this DNA, the repeat tracts shorten at each cell division. Once repeat tracts become critically short, a telomeric stress signal induces cellular senescence...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Teplitz, Gabriela M, Pasquier, Emeline, Bonnell, Erin, De Laurentiis, Evelina, Bartle, Louise, Lucier, Jean-François, Sholes, Samantha, Greider, Carol W, Wellinger, Raymund J
Format Journal Article
LanguageEnglish
Published United States 12.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Telomeric DNA, composed of short, direct repeats, is of crucial importance for chromosome stability. Due to intrinsic problems with replicating this DNA, the repeat tracts shorten at each cell division. Once repeat tracts become critically short, a telomeric stress signal induces cellular senescence and division arrest, which eventually may lead to devastating age-related degenerative diseases associated with dysfunctional telomers. Conversely, maintenance of telomere length by telomerase upregulation is a hallmark of cancer. Therefore, telomere length is a critical determinant of telomere function. How telomere length is established and molecular mechanisms for telomere-specific length regulation remained unknown. Here we show that subtelomeric chromatin is a determinant for how telomere equilibrium set-length is established in . The results demonstrate that telomerase recruitment mediated by the telomere-associated Sir4 protein is modulated on chromosome 3L in a telomere-specific way. Increased Sir4 abundance on subtelomeric heterochromatin of this specific telomere leads to telomere lengthening of only that telomere in , but not at other telomeres. Therefore, this work describes a mechanism for a how telomere-specific repeat tract length can be established. Further, our results will force the evaluation of telomere length away from a generalized view to a more telomere-specific consideration.
Bibliography:ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2692-8205
2692-8205
DOI:10.1101/2024.06.12.598646