Linking Convolutional Neural Networks with Graph Convolutional Networks: Application in Pulmonary Artery-Vein Separation
Graph Convolutional Networks (GCNs) are a novel and powerful method for dealing with non-Euclidean data, while Convolutional Neural Networks (CNNs) can learn features from Euclidean data such as images. In this work, we propose a novel method to combine CNNs with GCNs (CNN-GCN), that can consider bo...
Saved in:
Published in | Graph Learning in Medical Imaging Vol. 11849; pp. 36 - 43 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Summary: | Graph Convolutional Networks (GCNs) are a novel and powerful method for dealing with non-Euclidean data, while Convolutional Neural Networks (CNNs) can learn features from Euclidean data such as images. In this work, we propose a novel method to combine CNNs with GCNs (CNN-GCN), that can consider both Euclidean and non-Euclidean features and can be trained end-to-end. We applied this method to separate the pulmonary vascular trees into arteries and veins (A/V). Chest CT scans were pre-processed by vessel segmentation and skeletonization, from which a graph was constructed: voxels on the skeletons resulting in a vertex set and their connections in an adjacency matrix. 3D patches centered around each vertex were extracted from the CT scans, oriented perpendicularly to the vessel. The proposed CNN-GCN classifier was trained and applied on the constructed vessel graphs, where each node is then labeled as artery or vein. The proposed method was trained and validated on data from one hospital (11 patient, 22 lungs), and tested on independent data from a different hospital (10 patients, 10 lungs). A baseline CNN method and human observer performance were used for comparison. The CNN-GCN method obtained a median accuracy of 0.773 (0.738) in the validation (test) set, compared to a median accuracy of 0.817 by the observers, and 0.727 (0.693) by the CNN. In conclusion, the proposed CNN-GCN method combines local image information with graph connectivity information, improving pulmonary A/V separation over a baseline CNN method, approaching the performance of human observers. |
---|---|
ISBN: | 303035816X 9783030358167 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-35817-4_5 |