Urinary metabolic fingerprinting for thioacetamide-induced rat acute hepatic injury using fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), with reference to detection of potential biomarkers for hepatotoxicity

In this study, we performed urinary metabolic fingerprinting using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) in the thioacetamide (TAA)-induced rat model of acute hepatic injury to search for useful biomarkers involved in the acute hepatic toxicity. TAA was intraperiton...

Full description

Saved in:
Bibliographic Details
Published inToxicologic pathology Vol. 35; no. 4; p. 570
Main Authors Hasegawa, Mina, Ide, Mika, Takenaka, Shigeo, Yamate, Jyoji, Tsuyama, Shingo
Format Journal Article
LanguageEnglish
Published United States 01.06.2007
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:In this study, we performed urinary metabolic fingerprinting using Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) in the thioacetamide (TAA)-induced rat model of acute hepatic injury to search for useful biomarkers involved in the acute hepatic toxicity. TAA was intraperitonealy administered a single dose of 300 mg/kg, and urine sample and livers were collected on predose, and days 1, 3, 5, and 7 postdose (Days 1, 3, 5, and 7). Histopathologically, infiltration of macrophages occurred in the TAA-induced centrilobular injured area on Days 1 and 3, and the injured liver recovered on Days 5 and 7. On the scores plot of principal component analysis (PCA), the ion profiles of Days 1 and 3 were different from those of the predose, Days 5 and 7. The loading plot revealed that the metabolites causing PCA results were m/z 266.05390, 401.20737, and 429.23882. The ion at m/z 266.05390 was identified as a potassium ion adduct of deoxycytidine (dCyt). Because the appearance of urinary dCyt was corresponding to macrophage infiltration in the rat-injured liver, it was considered that the urinary dCyt might be released from infiltrated macrophages. dCty might be a biomarker for the acute hepatotoxicity in rats.
ISSN:0192-6233