High-load Mg2Ni nanoparticle-carbon nanofiber composites for hydrogen storage
Herein, a simple synthesis method for Mg2Ni composites with carbon nanofibers capable of hydrogen storage is presented. Specifically, n-butyl-sec-butyl-magnesium solution in hexane (C8H18Mg, 0.7 M) and bis-cyclopentadienyl nickel(ii) (nickelocene or NiCp2) were used as precursors for the Mg2Ni nanop...
Saved in:
Published in | Nanoscale Vol. 16; no. 38; pp. 17908 - 17925 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
03.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Herein, a simple synthesis method for Mg2Ni composites with carbon nanofibers capable of hydrogen storage is presented. Specifically, n-butyl-sec-butyl-magnesium solution in hexane (C8H18Mg, 0.7 M) and bis-cyclopentadienyl nickel(ii) (nickelocene or NiCp2) were used as precursors for the Mg2Ni nanoparticles. Subsequently, the nanoparticles were composited with carbon nanofibers (CNF) with high loading of Mg2Ni of 50 wt%, 75 wt%, 90 wt%, and 100 wt%. The physicochemical characterization of the materials indicated that the size of the as-prepared Mg2Ni nanoparticles was less than 5 nm and they were highly agglomerated due to a carbon-based binder. The best hydrogen storage values were determined to be 2.6–2.7 wt%. Among the tested materials, the composite with 75 wt% of Mg2Ni in CNF presented the best hydrogen uptake. The pressure–composition–temperature curves indicated changes in the hydriding equilibrium pressures of the Mg2Ni nanoparticles compared to the material with a similar composition produced using ball-milling and thermodynamic calculations. Thus, the results presented herein indicate the beneficial effect of nanosizing on hydriding reactions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2040-3364 2040-3372 2040-3372 |
DOI: | 10.1039/d4nr01725k |