Rational synthesis of an ultra-stable Zn(ii) coordination polymer based on a new tripodal pyrazole ligand for the highly sensitive and selective detection of Fe3+ and Cr2O72− in aqueous media
A mixed-ligand strategy has been used to construct stable luminescent coordination polymers (CPs). An ultra-stable Zn(ii) coordination polymer, [Zn(H3tpb)(Hbtc)]n (1) was hydrothermally synthesized by employing a new tripodal pyrazole ligand H3tpb and a classical carboxylic ligand H3btc (H3tpb = 1,3...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 49; no. 32; pp. 11201 - 11208 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A mixed-ligand strategy has been used to construct stable luminescent coordination polymers (CPs). An ultra-stable Zn(ii) coordination polymer, [Zn(H3tpb)(Hbtc)]n (1) was hydrothermally synthesized by employing a new tripodal pyrazole ligand H3tpb and a classical carboxylic ligand H3btc (H3tpb = 1,3,5-tris(pyrazolyl)benzene, H3btc = 1,3,5-benzenetricarboxylic acid). Complex 1 exhibits a 2D sql network. Importantly, 1 not only possesses excellent thermal stability but also shows superior chemical stability in terms of water resistance, acid/base aqueous solutions tolerance (pH = 2–12), and organic solvents resistance. This excellent structural stability was further illustrated from the perspective of thermal decomposition kinetics. The luminescence properties were investigated, showing that complex 1 displays high sensitivity and selectivity for detecting Fe3+ and Cr2O72− ions in aqueous solutions via luminescence quenching effects. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/d0dt01996h |