Engineering fluorescence intensity and electron concentration of monolayer MoS2 by forming heterostructures with semiconductor dots
In this work, novel 2D/0D hybrid heterostructures with facilely adjustable fluorescence intensity and carrier concentration are achieved by decorating monolayer MoS2 (1L-MoS2) flakes with semiconductor-dots (carbon-dots or ZnO-dots). By carbon-dot decoration, the fluorescence intensity of 1L-MoS2 is...
Saved in:
Published in | Nanoscale Vol. 11; no. 14; pp. 6544 - 6551 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
14.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, novel 2D/0D hybrid heterostructures with facilely adjustable fluorescence intensity and carrier concentration are achieved by decorating monolayer MoS2 (1L-MoS2) flakes with semiconductor-dots (carbon-dots or ZnO-dots). By carbon-dot decoration, the fluorescence intensity of 1L-MoS2 is significantly suppressed due to the n-type doping effect of electron transfer from carbon-dots to 1L-MoS2. In contrast, 1L-MoS2 decorated with ZnO-dots exhibits remarkably enhanced photoluminescence, because of the effective p-type doping modulation of electron transfer from 1L-MoS2 to ZnO-dots. The different charge transfer directions lie in the distinct energy band alignment of the two heterostructures. Raman, time-resolved photoluminescence and X-ray photoelectron spectroscopy studies prove the effective charge transfer between 1L-MoS2 and carbon-dots/ZnO-dots. Semi-quantitative estimations based on a mass-action-model demonstrate that the electron concentration in 1L-MoS2 can be controllably tuned from 1012 to 1014 cm−2via the p-type/n-type doping effect of these hybrid heterostructures. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2040-3364 2040-3372 2040-3372 |
DOI: | 10.1039/c8nr08209j |