Quantized H∞ stabilization for delayed memristive neural networks
The issue of H ∞ stabilization for delayed memristive neural networks with dynamic quantization is considered. The aim is to design a quantized sampled-data controller guaranteeing that the closed-loop system is globally asymptotically stable with a prescribed H ∞ disturbance attenuation level. By m...
Saved in:
Published in | Neural computing & applications Vol. 35; no. 22; pp. 16473 - 16486 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The issue of
H
∞
stabilization for delayed memristive neural networks with dynamic quantization is considered. The aim is to design a quantized sampled-data controller guaranteeing that the closed-loop system is globally asymptotically stable with a prescribed
H
∞
disturbance attenuation level. By means of set-valued maps and the differential inclusion theory, the network under consideration is transformed into a dynamic model subject to time-dependent bounded uncertainty. Then, two different time-dependent two-sided loop functionals are constructed for the non-necessarily and necessarily differential time delay situations, respectively. Two sufficient conditions on the stability and
H
∞
performance are derived via using these constructed functionals and a few inequality techniques. On the foundation of these conditions, co-designs of the needed feedback gain and dynamic quantization parameter are presented. Finally, three examples are provided to verify the applicability of the quantized sampled-data controller design methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-023-08510-3 |