A four-step mechanism for the formation of supported-nanoparticle heterogenous catalysts in contact with solution: the conversion of Ir(1,5-COD)Cl/γ-Al2O3 to Ir(0)(∼170)/γ-Al2O3

Product stoichiometry, particle-size defocusing, and kinetic evidence are reported consistent with and supportive of a four-step mechanism of supported transition-metal nanoparticle formation in contact with solution: slow continuous nucleation, A → B (rate constant k1), autocatalytic surface growth...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 136; no. 5; pp. 1930 - 1941
Main Authors Kent, Patrick D, Mondloch, Joseph E, Finke, Richard G
Format Journal Article
LanguageEnglish
Published United States 05.02.2014
Online AccessGet full text

Cover

Loading…
More Information
Summary:Product stoichiometry, particle-size defocusing, and kinetic evidence are reported consistent with and supportive of a four-step mechanism of supported transition-metal nanoparticle formation in contact with solution: slow continuous nucleation, A → B (rate constant k1), autocatalytic surface growth, A + B → 2B (rate constant k2), bimolecular agglomeration, B + B → C (rate constant k3), and secondary autocatalytic surface growth, A + C → 1.5C (rate constant k4), where A is nominally the Ir(1,5-COD)Cl/γ-Al2O3 precursor, B the growing Ir(0) particles, and C the larger, catalytically active nanoparticles. The significance of this work is at least 4-fold: first, this is the first documentation of a four-step mechanism for supported-nanoparticle formation in contact with solution. Second, the proposed four-step mechanism, which was obtained following the disproof of 18 alternative mechanisms, is a new four-step mechanism in which the new fourth step is A + C → 1.5C in the presence of the solid, γ-Al2O3 support. Third, the four-step mechanism provides rare, precise chemical and kinetic precedent for metal particle nucleation, growth, and now agglomeration (B + B → C) and secondary surface autocatalytic growth (A + C → 1.5C) involved in supported-nanoparticle heterogeneous catalyst formation in contact with solution. Fourth, one now has firm, disproof-based chemical-mechanism precedent for two specific, balanced pseudoelementary kinetic steps and their precise chemical descriptors of bimolecular particle agglomeration, B + B → C, and autocatalytic agglomeration, B + C → 1.5C, involved in, for example, nanoparticle catalyst sintering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-5126
DOI:10.1021/ja410194r