The role of cardiovascular magnetic resonance imaging in the diagnosis and prognosis of patients with heart failure
Cardiovascular magnetic resonance (CMR) imaging is a tomographic technique, which allows three-dimensional slice orientation without limitations from acoustic windows inherent to echocardiography. Further advantages of CMR are its high temporal and spatial resolution, its excellent soft tissue resol...
Saved in:
Published in | Herz Vol. 36; no. 2; pp. 84 - 93 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English German |
Published |
Germany
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cardiovascular magnetic resonance (CMR) imaging is a tomographic technique, which allows three-dimensional slice orientation without limitations from acoustic windows inherent to echocardiography. Further advantages of CMR are its high temporal and spatial resolution, its excellent soft tissue resolution and its high blood-to-tissue contrast. Cardiovascular magnetic resonance is currently the only imaging technique, which provides a comprehensive study of both structure and function of the heart as well as myocardial perfusion and viability. Moreover, post-processing of CMR images does not require any geometric assumptions as in echocardiography to determine ventricular dimensions. This is particularly important when evaluating ventricles of patients with chronic heart failure with severely altered morphology that may have regional variations in wall thickness and contractility at least in ischemic cardiomyopathy. The highly reproducible results of CMR imaging have turned this technique into a reference standard for the non-invasive assessment of ventricular dimensions, mass and function. In cases with indeterminate results of clinical, electrocardiographic and particularly echocardiographic findings CMR should be used early in the process of diagnosis of patients with heart failure. Not only can altered structure and degree of ventricular and valvular dysfunctions be accurately assessed but also regional perfusion deficits and/or myocardial scars are easily detected. For therapeutic and prognostic reasons a simple differentiation between ischemic and non-ischemic cardiomyopathy should be achieved as the first diagnostic step. In addition, the type and localization of the late gadolinium enhancement (LGE) phenomenon may aid in non-invasively differentiating the etiology of non-ischemic cardiomyopathy. CMR may also improve the assessment and extent of interventricular and intraventricular dyssynchrony in patients to be selected for cardiac resynchronization therapy (CRT). Lastly, the LGE phenomenon may provide independent prognostic information in patients with a CRT system implanted, as well as in patients with ischemic and non-ischemic cardiomyopathy. Thus, CMR imaging should be implemented early in the diagnostic process of patients with heart failure to significantly improve the speed and accuracy of diagnostic procedures, to control the effect of therapeutic measures, and to select patients with a limited prognosis by assessing the degree of ventricular dysfunction and the extent of myocardial scarring. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0340-9937 1615-6692 |
DOI: | 10.1007/s00059-010-3418-z |