CCR2+Ly6Chi Inflammatory Monocyte Recruitment Exacerbates Acute Disability Following Intracerebral Hemorrhage

Intracerebral hemorrhage (ICH) is a devastating type of stroke that lacks a specific treatment. An intense immune response develops after ICH, which contributes to neuronal injury, disability, and death. However, the specific mediators of inflammation-induced injury remain unclear. The objective of...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 34; no. 11; pp. 3901 - 3909
Main Authors Hammond, Matthew D., Taylor, Roslyn A., Mullen, Michael T., Ai, Youxi, Aguila, Hector L., Mack, Matthias, Kasner, Scott E., McCullough, Louise D., Sansing, Lauren H.
Format Journal Article
LanguageEnglish
Published Society for Neuroscience 12.03.2014
Online AccessGet full text

Cover

Loading…
More Information
Summary:Intracerebral hemorrhage (ICH) is a devastating type of stroke that lacks a specific treatment. An intense immune response develops after ICH, which contributes to neuronal injury, disability, and death. However, the specific mediators of inflammation-induced injury remain unclear. The objective of the present study was to determine whether blood-derived CCR2 + Ly6C hi inflammatory monocytes contribute to disability. ICH was induced in mice and the resulting inflammatory response was quantified using flow cytometry, confocal microscopy, and neurobehavioral testing. Importantly, blood-derived monocytes were distinguished from resident microglia by differential CD45 staining and by using bone marrow chimeras with fluorescent leukocytes. After ICH, blood-derived CCR2 + Ly6C hi inflammatory monocytes trafficked into the brain, outnumbered other leukocytes, and produced tumor necrosis factor. Ccr2 −/− mice, which have few circulating inflammatory monocytes, exhibited better motor function following ICH than control mice. Chimeric mice with wild-type CNS cells and Ccr2 −/− hematopoietic cells also exhibited early improvement in motor function, as did wild-type mice after inflammatory monocyte depletion. These findings suggest that blood-derived inflammatory monocytes contribute to acute neurological disability. To determine the translational relevance of our experimental findings, we examined CCL2, the principle ligand for the CCR2 receptor, in ICH patients. Serum samples from 85 patients were collected prospectively at two hospitals. In patients, higher CCL2 levels at 24 h were independently associated with poor functional outcome at day 7 after adjusting for potential confounding variables. Together, these findings suggest that inflammatory monocytes worsen early disability after murine ICH and may represent a therapeutic target for patients.
Bibliography:Author contributions: M.D.H., H.L.A., M.M., S.E.K., L.D.M., and L.H.S. designed research; M.D.H., R.A.T., M.T.M., Y.A., H.L.A., and L.H.S. performed research; M.D.H., R.A.T., S.E.K., and L.H.S. analyzed data; M.D.H. and L.H.S. wrote the paper.
ISSN:0270-6474
1529-2401
DOI:10.1523/JNEUROSCI.4070-13.2014