Relationship between insulin receptor subunit association and protein kinase activation: insulin-dependent covalent and Mn/MgATP-dependent noncovalent association of alpha beta heterodimeric insulin receptors into an alpha 2 beta 2 heterotetrameric state

The purified human placenta alpha 2 beta 2 heterotetrameric insulin receptor was reduced and dissociated into a functional alpha beta heterodimeric complex by a combination of alkaline pH and dithiothreitol treatment. In the presence of Mn/MgATP, insulin binding to the isolated alpha beta heterodime...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 28; no. 2; pp. 785 - 792
Main Authors Wilden, P A, Morrison, B D, Pessin, J E
Format Journal Article
LanguageEnglish
Published United States 24.01.1989
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The purified human placenta alpha 2 beta 2 heterotetrameric insulin receptor was reduced and dissociated into a functional alpha beta heterodimeric complex by a combination of alkaline pH and dithiothreitol treatment. In the presence of Mn/MgATP, insulin binding to the isolated alpha beta heterodimeric insulin receptor was found to induce the formation of a covalent disulfide-linked alpha 2 beta 2 heterotetrameric complex. In the absence of insulin, a noncovalent association of the alpha beta heterodimeric insulin receptor complex into an alpha 2 beta 2 heterotetrameric state required the continuous presence of both a divalent metal ion (Mn or Mg) and an adenine nucleotide (ATP, ADP, or AMPPCP). Thus, Mn/MgATP binding and not insulin receptor autophosphorylation was responsible for the noncovalent association into the alpha 2 beta 2 heterotetrameric state. However, the divalent metal ions or NaATP separately was ineffective in inducing the noncovalent association between the alpha beta heterodimers. The specific sulfhydryl agent iodoacetamide (IAN) was observed to inhibit the insulin-dependent covalent association of the alpha beta heterodimers without affecting the Mn/MgATP-induced noncovalent association into the alpha 2 beta 2 heterotetrameric state. Insulin treatment of the isolated alpha beta heterodimeric complex in the presence of IAN demonstrated that the Mn/MgATP-induce noncovalent association into the alpha 2 beta 2 heterotetrameric state was sufficient for insulin stimulation of beta-subunit autophosphorylation and exogenous substrate protein kinase activity. These data indicate that although interaction between the individual insulin receptor alpha beta heterodimers is necessary for insulin stimulation of protein kinase activity it does not require covalent disulfide bond formation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-2960
DOI:10.1021/bi00428a056